Neuroprotective effect of apo-9′-fucoxanthinone against cerebral ischemia injury by targeting the PI3K/AKT/GSK-3β pathway

被引:0
|
作者
Qi, Yu [1 ]
Tang, Shuhua [2 ]
Jin, Shengjie [1 ]
Wang, Jiabao [1 ]
Zhang, Yuanlong [1 ]
Xu, Xiao [1 ]
Zhu, Haoyun [1 ]
Zhang, Jingwen [1 ]
Xu, Xiangwei [1 ]
Zhao, Min [3 ]
Zhu, Haoru [1 ]
Yan, Pengcheng [1 ]
机构
[1] Wenzhou Med Univ, Sch Tradit Chinese Med, Wenzhou 325035, Zhejiang, Peoples R China
[2] Zhejiang Univ, Sir Run Run Shaw Hosp, Zhejiang Engn Res Ctr Cognit Healthcare, Sch Med, Hangzhou 310000, Zhejiang, Peoples R China
[3] Wenzhou Med Univ, Sch Pharmaceut Sci, Wenzhou 325035, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Apo-9 ' -fucoxanthinone; Cerebral ischemia injury; Inflammation; Apoptosis; PI3K/AKT/GSK-3 beta pathway; NF-KAPPA-B; ISCHEMIA/REPERFUSION INJURY; SIGNALING PATHWAY; ARTERY OCCLUSION; DRUG DISCOVERY; INFLAMMASOME; ACTIVATION;
D O I
10.1016/j.ejphar.2025.177348
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Neuronal loss in cerebral ischemia primarily results from the combined effects of inflammatory responses and programmed cell death. Currently, there is an urgent need for potent neuroprotectants targeting both inflammatory and apoptotic responses for the treatment of ischemic stroke. Marine natural products are a vital source of novel drug candidates. Apo-9 '-fucoxanthinone (APO-9 '), a degradation product of fucoxanthin derived from marine brown algae, is known for its substantial anti-inflammatory effects, yet its neuroprotective action has not been clearly defined. In this study, the neuroprotective effects of APO-9 ' in alleviating cerebral ischemia injury and the underlying mechanism were primarily explored with the aid of tandem mass tag-based quantitative proteomics. APO-9 ' was found to markedly decrease the levels of inflammation factors by suppressing the IKK/ I kappa B/NF-kappa B pathway in lipopolysaccharide (LPS)-induced BV2 cells. It also attenuated apoptotic responses in both LPS-induced BV2 cells and oxygen-glucose deprivation/reoxygenation (OGD/R)-induced SH-SY5Y cells. These neuroprotective effects of APO-9 ' were linked to the activation of the PI3K/AKT pathway. Intraperitoneal injection of APO-9 ' in a MCAO mouse model showed significant cerebral protection against ischemia. The involvements of the IKK/I kappa B/NF-kappa B and PI3K/AKT/GSK-3 beta pathways were also confirmed in its alleviation of cerebral ischemia in vivo. This study established that APO-9 ' exerted neuroprotection against cerebral ischemia by inhibiting inflammatory and apoptotic cascades via the IKK/I kappa B/NF-kappa B and PI3K/AKT/GSK-3 beta signaling pathways.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] PI3K/Akt pathway contributes to neuroprotective effect of Tongxinluo against focal cerebral ischemia and reperfusion injury in rats
    Yu, Zhong-Hai
    Cai, Min
    Xiang, Jun
    Zhang, Zhen-Nian
    Zhang, Jing-Si
    Song, Xiao-Ling
    Zhang, Wen
    Bao, Jie
    Li, Wen-Wei
    Cai, Ding-Fang
    JOURNAL OF ETHNOPHARMACOLOGY, 2016, 181 : 8 - 19
  • [2] Neuroprotective capabilities of TSA against cerebral ischemia/reperfusion injury via PI3K/Akt signaling pathway in rats
    Ma, Xiao-Hui
    Gao, Qiang
    Jia, Zhen
    Zhang, Ze-Wei
    INTERNATIONAL JOURNAL OF NEUROSCIENCE, 2015, 125 (02) : 140 - 146
  • [3] Protective Effect of Artemisinin on Cerebral Ischemic Stroke Via PI3k/Akt/GSK-3ß Signaling Pathway Activation
    Li, Ruilin
    Liu, Heng
    Zhao, Rangyin
    You, Hong
    LATIN AMERICAN JOURNAL OF PHARMACY, 2023, 42 (05): : 1048 - 1055
  • [4] Evaluation of the effect of GSK-3β on liver cancer based on the PI3K/AKT pathway
    Guo, Jiageng
    Jiang, Xinya
    Lian, Jing
    Li, Huaying
    Zhang, Fan
    Xie, Jinling
    Deng, Jiagang
    Hou, Xiaotao
    Du, Zhengcai
    Hao, Erwei
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2024, 12
  • [5] Artemether exerts neuroprotective effect in Parkinson's disease through the PI3K/Akt/GSK-3β signaling pathway
    Quan, Shengli
    Li, Jinhua
    Ding, Shuxian
    Zhuo, Xingjie
    Yang, Yuanxiao
    Li, Qin
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2025, 996
  • [6] Neuroprotective effect of salidroside on hippocampal neurons in diabetic mice via PI3K/Akt/GSK-3β signaling pathway
    Wang, Xue-Hua
    Zuo, Zhong-Fu
    Meng, Lu
    Yang, Qi
    Lv, Pan
    Zhao, Li-Pan
    Wang, Xiao-Bai
    Wang, Yu-Fei
    Huang, Ying
    Fu, Cong
    Liu, Wen-Qiang
    Liu, Xue-Zheng
    Zheng, De-Yu
    PSYCHOPHARMACOLOGY, 2023, 240 (09) : 1865 - 1876
  • [7] Syringic acid mitigates myocardial ischemia reperfusion injury by activating the PI3K/Akt/GSK-3β signaling pathway
    Liu, Gen
    Zhang, Bo-fang
    Hu, Qi
    Liu, Xiao-pei
    Chen, Jing
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2020, 531 (02) : 242 - 249
  • [8] Astaxanthin alleviates spinal cord ischemia-reperfusion injury via activation of PI3K/Akt/GSK-3β pathway in rats
    Fu, Jian
    Sun, Haibin
    Wei, Haofei
    Dong, Mingjie
    Zhang, Yongzhe
    Xu, Wei
    Fang, Yanwei
    Zhao, Jianhui
    JOURNAL OF ORTHOPAEDIC SURGERY AND RESEARCH, 2020, 15 (01)
  • [9] Astaxanthin alleviates spinal cord ischemia-reperfusion injury via activation of PI3K/Akt/GSK-3β pathway in rats
    Jian Fu
    Haibin Sun
    Haofei Wei
    Mingjie Dong
    Yongzhe Zhang
    Wei Xu
    Yanwei Fang
    Jianhui Zhao
    Journal of Orthopaedic Surgery and Research, 15
  • [10] PI3K/AKT pathway: A potential therapeutic target in cerebral ischemia-reperfusion injury
    Han, Yiming
    Sun, Yu
    Peng, Shiyu
    Tang, Tingting
    Zhang, Beibei
    Yu, Ruonan
    Sun, Xiaoyan
    Guo, Shanshan
    Ma, Lijuan
    Li, Peng
    Yang, Pengfei
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2025, 998