Neuroprotective effect of apo-9′-fucoxanthinone against cerebral ischemia injury by targeting the PI3K/AKT/GSK-3β pathway

被引:0
|
作者
Qi, Yu [1 ]
Tang, Shuhua [2 ]
Jin, Shengjie [1 ]
Wang, Jiabao [1 ]
Zhang, Yuanlong [1 ]
Xu, Xiao [1 ]
Zhu, Haoyun [1 ]
Zhang, Jingwen [1 ]
Xu, Xiangwei [1 ]
Zhao, Min [3 ]
Zhu, Haoru [1 ]
Yan, Pengcheng [1 ]
机构
[1] Wenzhou Med Univ, Sch Tradit Chinese Med, Wenzhou 325035, Zhejiang, Peoples R China
[2] Zhejiang Univ, Sir Run Run Shaw Hosp, Zhejiang Engn Res Ctr Cognit Healthcare, Sch Med, Hangzhou 310000, Zhejiang, Peoples R China
[3] Wenzhou Med Univ, Sch Pharmaceut Sci, Wenzhou 325035, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Apo-9 ' -fucoxanthinone; Cerebral ischemia injury; Inflammation; Apoptosis; PI3K/AKT/GSK-3 beta pathway; NF-KAPPA-B; ISCHEMIA/REPERFUSION INJURY; SIGNALING PATHWAY; ARTERY OCCLUSION; DRUG DISCOVERY; INFLAMMASOME; ACTIVATION;
D O I
10.1016/j.ejphar.2025.177348
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Neuronal loss in cerebral ischemia primarily results from the combined effects of inflammatory responses and programmed cell death. Currently, there is an urgent need for potent neuroprotectants targeting both inflammatory and apoptotic responses for the treatment of ischemic stroke. Marine natural products are a vital source of novel drug candidates. Apo-9 '-fucoxanthinone (APO-9 '), a degradation product of fucoxanthin derived from marine brown algae, is known for its substantial anti-inflammatory effects, yet its neuroprotective action has not been clearly defined. In this study, the neuroprotective effects of APO-9 ' in alleviating cerebral ischemia injury and the underlying mechanism were primarily explored with the aid of tandem mass tag-based quantitative proteomics. APO-9 ' was found to markedly decrease the levels of inflammation factors by suppressing the IKK/ I kappa B/NF-kappa B pathway in lipopolysaccharide (LPS)-induced BV2 cells. It also attenuated apoptotic responses in both LPS-induced BV2 cells and oxygen-glucose deprivation/reoxygenation (OGD/R)-induced SH-SY5Y cells. These neuroprotective effects of APO-9 ' were linked to the activation of the PI3K/AKT pathway. Intraperitoneal injection of APO-9 ' in a MCAO mouse model showed significant cerebral protection against ischemia. The involvements of the IKK/I kappa B/NF-kappa B and PI3K/AKT/GSK-3 beta pathways were also confirmed in its alleviation of cerebral ischemia in vivo. This study established that APO-9 ' exerted neuroprotection against cerebral ischemia by inhibiting inflammatory and apoptotic cascades via the IKK/I kappa B/NF-kappa B and PI3K/AKT/GSK-3 beta signaling pathways.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] MiR-21 Ameliorates Cerebral Ischemia/Reperfusion Injury via PI3K/Akt/GSK-3β Pathway
    Wang, Qian
    Zhu, Jianbing
    Zhang, Lei
    Xie, Huiying
    Wu, Chuanyong
    Liang, Xiaohui
    Xu, Shujun
    Lou, Jiatao
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2015, 66 (16) : C236 - C236
  • [2] Sevoflurane Postconditioning Induces Neuroprotection against Transient Cerebral Ischemia: Role of PI3K/Akt/GSK-3β Pathway
    Ye, R.
    Zhao, G.
    CEREBROVASCULAR DISEASES, 2011, 32 : 8 - 9
  • [3] Neuroprotective effect of humanin on cerebral ischemia/reperfusion injury is mediated by a PI3K/Akt pathway
    Xu, Xingshun
    Chua, Chu Chang
    Gao, Finping
    Chua, Kao-Wei
    Wang, Hong
    Hamdy, Ronald C.
    Chua, Balvin H. L.
    BRAIN RESEARCH, 2008, 1227 : 12 - 18
  • [4] Kaempferide Protects against Myocardial Ischemia/Reperfusion Injury through Activation of the PI3K/Akt/GSK-3β Pathway
    Wang, Dong
    Zhang, Xinjie
    Li, Defang
    Hao, Wenjin
    Meng, Fanqing
    Wang, Bo
    Han, Jichun
    Zheng, Qiusheng
    MEDIATORS OF INFLAMMATION, 2017, 2017
  • [5] PI3K/Akt pathway contributes to neuroprotective effect of Tongxinluo against focal cerebral ischemia and reperfusion injury in rats
    Yu, Zhong-Hai
    Cai, Min
    Xiang, Jun
    Zhang, Zhen-Nian
    Zhang, Jing-Si
    Song, Xiao-Ling
    Zhang, Wen
    Bao, Jie
    Li, Wen-Wei
    Cai, Ding-Fang
    JOURNAL OF ETHNOPHARMACOLOGY, 2016, 181 : 8 - 19
  • [6] Tetramethylpyrazine exerts a protective effect against injury from acute myocardial ischemia by regulating the PI3K/Akt/GSK-3β signaling pathway
    Qing Yang
    Dan Dan Huang
    Da Guang Li
    Bo Chen
    Ling Min Zhang
    Cui Ling Yuan
    Hong Hong Huang
    Cellular & Molecular Biology Letters, 2019, 24
  • [7] Neuroprotective effects of resveratrol through modulation of PI3K/Akt/GSK-3β pathway and metalloproteases
    Ozpak, Lutfiye
    Bagca, Bakiye Goker
    IUBMB LIFE, 2024, 76 (12) : 1199 - 1208
  • [8] Tetramethylpyrazine exerts a protective effect against injury from acute myocardial ischemia by regulating the PI3K/Akt/GSK-3 signaling pathway
    Yang, Qing
    Huang, Dan Dan
    Li, Da Guang
    Chen, Bo
    Zhang, Ling Min
    Yuan, Cui Ling
    Huang, Hong Hong
    CELLULAR & MOLECULAR BIOLOGY LETTERS, 2019, 24 (1)
  • [9] Regulation of PI3K/Akt/GSK-3 pathway by cannabinoids in the brain
    Ozaita, Andres
    Puighermanal, Emma
    Maldonado, Rafael
    JOURNAL OF NEUROCHEMISTRY, 2007, 102 (04) : 1105 - 1114
  • [10] Evaluation of the effect of GSK-3β on liver cancer based on the PI3K/AKT pathway
    Guo, Jiageng
    Jiang, Xinya
    Lian, Jing
    Li, Huaying
    Zhang, Fan
    Xie, Jinling
    Deng, Jiagang
    Hou, Xiaotao
    Du, Zhengcai
    Hao, Erwei
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2024, 12