Global well-posedness of the compressible elastic Navier-Stokes-Poisson equations in half-spaces

被引:0
作者
Shen, Rong [1 ]
Wang, Yong [2 ,3 ]
Wu, Yunshun [4 ]
机构
[1] South China Normal Univ, South China Res Ctr Appl Math & Interdisciplinary, Guangzhou 510631, Peoples R China
[2] South China Normal Univ, South China Res Ctr Appl Math & Interdisciplinary, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[3] Chinese Univ Hong Kong, Inst Math Sci, Shatin, Hong Kong, Peoples R China
[4] Guizhou Normal Univ, Sch Math Sci, Guiyang 550025, Guizhou, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
BOUNDARY-VALUE-PROBLEMS; RAYLEIGH-TAYLOR PROBLEM; VISCOELASTIC FLUID; OPTIMAL DECAY; EXISTENCE; RATES; MODEL;
D O I
10.1063/5.0244275
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the three-dimensional compressible elastic Navier-Stokes-Poisson equations, which model the motion of a kind of compressible electrically conducting viscoelastic flows. In the Poisson equation, the positive background charge satisfies the constant distribution or the Boltzmann distribution. Under the Hodge boundary condition for the velocity and the Dirichlet or Neumann boundary condition for the electrostatic potential, we obtain the uniquely global strong solution near a constant equilibrium state for the half-space problem by a delicate energy method.
引用
收藏
页数:28
相关论文
共 62 条
[1]   Optimal decay rate for the compressible Navier-Stokes-Poisson system in the critical Lp framework [J].
Bie, Qunyi ;
Wang, Qiru ;
Yao, Zheng-an .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (12) :8391-8417
[2]  
Bourguignon J. P., 1974, J. Functional Analysis, V15, P341
[3]   Vanishing Viscosity Limit for Incompressible Viscoelasticity in Two Dimensions [J].
Cai, Yuan ;
Lei, Zhen ;
Lin, Fanghua ;
Masmoudi, Nader .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2019, 72 (10) :2063-2120
[4]   About lifespan of regular solutions of equations related to viscoelastic fluids [J].
Chemin, JY ;
Masmoudi, N .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (01) :84-112
[5]   Global strong solutions to the 3D non-isentropic compressible Navier-Stokes-Poisson equations in bounded domains [J].
Chen, Huayu ;
Si, Xin ;
Yu, Haibo .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (03)
[6]   THE 3D COMPRESSIBLE VISCOELASTIC FLUID IN A BOUNDED DOMAIN [J].
Chen, Qing ;
Wu, Guochun .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2018, 16 (05) :1303-1323
[7]   The global existence of small solutions to the incompressible viscoelastic fluid system in 2 and 3 space dimensions [J].
Chen, Yemin ;
Zhang, Ping .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (12) :1793-1810
[8]   Splash Singularities for a General Oldroyd Model with Finite Weissenberg Number [J].
Di Iorio, Elena ;
Marcati, Pierangelo ;
Spirito, Stefano .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 235 (03) :1589-1660
[9]  
Elgindi TM, 2020, ARCH RATION MECH AN, V235, P1979, DOI 10.1007/s00205-019-01457-7
[10]   Global Regularity for Some Oldroyd-B Type Models [J].
Elgindi, Tarek M. ;
Rousset, Frederic .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2015, 68 (11) :2005-2021