TransFusion - A Transparency-Based Diffusion Model for Anomaly Detection

被引:0
|
作者
Fucka, Matic [1 ]
Zavrtanik, Vitj An [1 ]
Skocaj, Danijel [1 ]
机构
[1] Univ Ljubljana, Fac Comp & Informat Sci, Ljubljana, Slovenia
来源
COMPUTER VISION-ECCV 2024, PT XXXV | 2025年 / 15093卷
关键词
Anomaly detection; Diffusion model; Industrial inspection;
D O I
10.1007/978-3-031-72761-0_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Surface anomaly detection is a vital component in manufacturing inspection. Current discriminative methods follow a two-stage architecture composed of a reconstructive network followed by a discriminative network that relies on the reconstruction output. Currently used reconstructive networks often produce poor reconstructions that either still contain anomalies or lack details in anomaly-free regions. Discriminative methods are robust to some reconstructive network failures, suggesting that the discriminative network learns a strong normal appearance signal that the reconstructive networks miss. We reformulate the two-stage architecture into a single-stage iterative process that allows the exchange of information between the reconstruction and localization. We propose a novel transparency-based diffusion process where the transparency of anomalous regions is progressively increased, restoring their normal appearance accurately while maintaining the appearance of anomaly-free regions using localization cues of previous steps. We implement the proposed process as TRANSparency DifFUSION (TransFusion), a novel discriminative anomaly detection method that achieves state-of-the-art performance on both the VisA and the MVTec AD datasets, with an image-level AUROC of 98.5% and 99.2%, respectively. Code: https://github.com/MaticFuc/ECCV_TransFusion
引用
收藏
页码:91 / 108
页数:18
相关论文
共 50 条
  • [1] Latent Diffusion Based Multi-class Anomaly Detection
    Wang, Chenxing
    Tavakkoli, Alireza
    ADVANCES IN VISUAL COMPUTING, ISVC 2023, PT I, 2023, 14361 : 487 - 498
  • [2] UNSUPERVISED ANOMALY DETECTION FOR MULTIVARIATE TIME SERIES USING DIFFUSION MODEL
    Hu, Rongyao
    Yuan, Xinyu
    Qiao, Yan
    Zhang, BenChu
    Zhao, Pei
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2024), 2024, : 9606 - 9610
  • [3] SCConv-Denoising Diffusion Probabilistic Model Anomaly Detection Based on TimesNet
    Zhou, Jingquan
    Yang, Xinhe
    Ren, Zhu
    ELECTRONICS, 2025, 14 (04):
  • [4] ITERATIVE DIFFUSION-BASED ANOMALY DETECTION
    Mishne, Gal
    Cohen, Israel
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 1682 - 1686
  • [5] Unsupervised industrial anomaly detection with diffusion models
    Xu, Haohao
    Xu, Shuchang
    Yang, Wenzhen
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 97
  • [6] Denoising diffusion model with adversarial learning for unsupervised anomaly detection on brain MRI images
    Yu, Jongmin
    Oh, Hyeontaek
    Lee, Younkwan
    Yang, Jinhong
    PATTERN RECOGNITION LETTERS, 2024, 186 : 229 - 235
  • [7] Unsupervised anomaly detection for Nuclear Power Plants based on Denoising Diffusion Probabilistic Models
    Liu, Shiqiao
    Zhu, Zifei
    Zhao, Xinwen
    Wang, Yangguang
    Sun, Xiang
    Yu, Lei
    PROGRESS IN NUCLEAR ENERGY, 2025, 178
  • [8] Anomaly detection based on a dynamic Markov model
    Ren, Huorong
    Ye, Zhixing
    Li, Zhiwu
    INFORMATION SCIENCES, 2017, 411 : 52 - 65
  • [9] Ensemble anomaly score for video anomaly detection using denoise diffusion model and motion filters
    Wang, Zhiqiang
    Gu, Xiaojing
    Hu, Jingyu
    Gu, Xingsheng
    NEUROCOMPUTING, 2023, 553
  • [10] Anomaly detection based on a granular Markov model
    Zhou, Yanjun
    Ren, Huorong
    Li, Zhiwu
    Pedrycz, Witold
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 187