Microwave-Assisted Conversion of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic Acid over CuCo Oxide

被引:0
作者
Prasad, Shivshankar [1 ]
Kumar, Ajay [1 ]
Dutta, Suman [1 ]
Ahmad, Ejaz [1 ,2 ]
机构
[1] Indian Inst Technol, Indian Sch Mines, Dept Chem Engn, GreenCat Lab, Dhanbad 826004, India
[2] Indian Inst Technol, Indian Sch Mines, Naresh Vashisht Ctr Hydrogen & CCUS Technol, Dhanbad 826004, India
来源
CHEMPLUSCHEM | 2025年 / 90卷 / 01期
关键词
5-Hydroxymethylfurfural; 2,5-Furandicarboxylic acid; Bimetallic catalyst; Adsorbed oxygen; Tert-butyl hydroperoxide; CATALYZED AEROBIC OXIDATION; SELECTIVE OXIDATION;
D O I
10.1002/cplu.202400573
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A series of CuCo bimetallic catalysts were prepared via the co-precipitation method for the catalytic transformation of biomass-derived 5-hydroxymethylfurfural (HMF) into 2,5-furandicarboxylic acid (FDCA). FDCA acts as a precursor for biodegradable biopolymer polyethylene furanoate production, thereby achieving a carbon-neutral approach. Out of all the synthesized catalysts, CuCo(1 : 1) showed remarkable catalytic activity and yielded 70.67 % FDCA while achieving 100 % HMF conversion in 5 minutes at 50 degrees C temperature in the presence of tert-butyl hydroperoxide as an oxidant. Synergistic effects of the catalyst, such as adsorbed oxygen, relative oxygen vacancy, lesser pore size, and pore volume, were key factors attributed to the catalyst's excellent activity. The synthesized catalyst showed good recyclability with a minimal decrease in FDCA yield up to 5 cycles. Pre and post-characterization of catalysts such as BET, TEM, FE-SEM, XRD, H2-TPR, CO2 TPD, ICP-OES, and XPS were done to correlate the catalyst's properties with its activity. In addition, the effect of reaction parameters such as stirring speed, temperature reaction time, catalyst weight, base, and oxidant were studied to achieve optimum reaction conditions. The reaction products were analyzed quantitatively and qualitatively using HPLC and HR-MS.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Oxygen vacancy boosted oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over CuCoOx
    Jiang, Wei
    Wang, Dongjun
    Deng, Xunliang
    Gao, Yuxin
    Wang, Weizong
    Ge, Tengjie
    Zhao, Chengkang
    Sun, Yong
    MOLECULAR CATALYSIS, 2024, 556
  • [22] Cu catalyzed oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran and 2,5-furandicarboxylic acid under benign reaction conditions
    Hansen, Thomas S.
    Sadaba, Irantzu
    Garcia-Suarez, Eduardo J.
    Riisager, Anders
    APPLIED CATALYSIS A-GENERAL, 2013, 456 : 44 - 50
  • [23] Facile Production of 2,5-Furandicarboxylic Acid via Oxidation of Industrially Sourced Crude 5-Hydroxymethylfurfural
    Zuo, Xiaobin
    Venkitasubramanian, Padmesh
    Martin, Kevin J.
    Subramaniam, Bala
    CHEMSUSCHEM, 2022, 15 (13)
  • [24] Advances in the Energy-Saving Electro-Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Ren, Yujie
    Fan, Shilin
    Yu, Xiao
    Shi, Shaoqi
    Wang, Jinggang
    Zeng, Jia
    Zhang, Jian
    Chen, Chunlin
    ADVANCED SUSTAINABLE SYSTEMS, 2025, 9 (04):
  • [25] Kinetics of homogeneous 5-hydroxymethylfurfural oxidation to 2,5-furandicarboxylic acid with Co/Mn/Br catalyst
    Zuo, Xiaobin
    Chaudhari, Amit S.
    Snavely, Kirk
    Niu, Fenghui
    Zhu, Hongda
    Martin, Kevin J.
    Subramaniam, Bala
    AICHE JOURNAL, 2017, 63 (01) : 162 - 171
  • [26] Highly Efficient Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid with Heteropoly Acids and Ionic Liquids
    Chen, Ruru
    Xin, Jiayu
    Yan, Dongxia
    Dong, Huixian
    Lu, Xingmei
    Zhang, Suojiang
    CHEMSUSCHEM, 2019, 12 (12) : 2715 - 2724
  • [27] A novel platinum nanocatalyst for the oxidation of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic acid under mild conditions
    Siankevich, Sviatlana
    Savoglidis, Georgios
    Fei, Zhaofu
    Laurenczy, Gabor
    Alexander, Duncan T. L.
    Yan, Ning
    Dyson, Paul J.
    JOURNAL OF CATALYSIS, 2014, 315 : 67 - 74
  • [28] Copper-manganese oxide for highly selective oxidation of 5-hydroxymethylfurfural to bio-monomer 2, 5-furandicarboxylic acid
    Wang, Fei
    Lai, Jinhua
    Liu, Zixuan
    Wen, Sha
    Liu, Xianxiang
    BIOMASS CONVERSION AND BIOREFINERY, 2023, 13 (18) : 16887 - 16898
  • [29] Electrocatalytic oxidation of 5-hydroxymethylfurfural for sustainable 2,5-furandicarboxylic acid production-From mechanism to catalysts design
    Jiang, Xiaoli
    Li, Wei
    Liu, Yanxia
    Zhao, Lin
    Chen, Zhikai
    Zhang, Lan
    Zhang, Yagang
    Yun, Sining
    SUSMAT, 2023, 3 (01): : 21 - 43
  • [30] Electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on supported Au and Pd bimetallic nanoparticles
    Chadderdon, David J.
    Xin, Le
    Qi, Ji
    Qiu, Yang
    Krishna, Phani
    More, Karren L.
    Li, Wenzhen
    GREEN CHEMISTRY, 2014, 16 (08) : 3778 - 3786