Research on Network Flow Anomaly Identification and Detection Model based on Deep Learning

被引:0
|
作者
Wan, Yidan [1 ]
Zhang, Deqing [1 ]
Liu, Zhihui [2 ]
机构
[1] Anhui Sanlian Univ, Modern Ind Coll Intelligent Transportat, Hefei, Peoples R China
[2] Anhui Sanlian Univ, Ind Coll Model Wellness, Hefei, Peoples R China
来源
PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON MACHINE INTELLIGENCE AND DIGITAL APPLICATIONS, MIDA2024 | 2024年
关键词
Network abnormal traffic detection; CVAE; LSTM; deep learning; classification;
D O I
10.1145/3662739.3662742
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, the network scale is gradually expanding, and the number of netizens is constantly increasing. With the rapid development of the network in the direction of diversification, the traditional intrusion detection system (IDS) has problems such as low accuracy and high false alarm rate, which are difficult to guarantee the current network security. In this paper, the author proposes a method that combines conditional variational autoencoder (CVAE) and long-short-term memory (LSTM) network to identify and detect abnormal flow, and then some key technologies of traffic detection model is discussed. At present, the main problems in network traffic anomaly detection include imbalanced data distribution and low detection efficiency of traditional models. Due to the fact that most network detection data often has the characteristics of a small number of attack category samples and imbalanced data distribution, CVAE is used to enhance and expand the attack samples to obtain balanced data samples in this paper, and then the LSTM network is used for anomaly identification and detection. In order to prove the superiority of the model, the author evaluates the model through the accuracy, precision, recall and F1. Compared with traditional machine learning methods, the model has higher accuracy and lower training complexity.
引用
收藏
页码:710 / 716
页数:7
相关论文
共 50 条
  • [21] A joint model based on graph and deep learning for hyperspectral anomaly detection
    Zhang, Lili
    Lin, Fang
    Fu, Baohong
    INFRARED PHYSICS & TECHNOLOGY, 2024, 139
  • [22] Enhanced Network Anomaly Detection Based on Deep Neural Networks
    Naseer, Sheraz
    Saleem, Yasir
    Khalid, Shehzad
    Bashir, Muhammad Khawar
    Han, Jihun
    Iqbal, Muhammad Munwar
    Han, Kijun
    IEEE ACCESS, 2018, 6 : 48231 - 48246
  • [23] An anomaly-based Network Intrusion Detection System using Deep learning
    Nguyen Thanh Van
    Tran Ngoc Thinh
    Le Thanh Sach
    2017 INTERNATIONAL CONFERENCE ON SYSTEM SCIENCE AND ENGINEERING (ICSSE), 2017, : 210 - 214
  • [24] A Research Review of Pest Identification and Detection Based on Deep Learning
    Wu, Tian
    Wu, Gui
    Tao, Jun
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 6075 - 6079
  • [25] Stall prediction model based on deep learning network in axial flow compressor
    Deng, Yuyang
    Li, Jichao
    Liu, Jingyuan
    Peng, Feng
    Zhang, Hongwu
    Schoen, Marco P.
    CHINESE JOURNAL OF AERONAUTICS, 2025, 38 (04)
  • [26] FlowGANAnomaly: Flow-Based Anomaly Network Intrusion Detection with Adversarial Learning
    Li, Zeyi
    Wang, Pan
    Wang, Zixuan
    Zhan, De-chuan
    CHINESE JOURNAL OF ELECTRONICS, 2024, 33 (01) : 58 - 71
  • [27] Optimal deep learning based object detection for pedestrian and anomaly recognition model
    Allabaksh Shaik
    Shaik Mahaboob Basha
    International Journal of Information Technology, 2024, 16 (7) : 4721 - 4728
  • [28] An Evolutionary Deep Learning-Based Anomaly Detection Model for Securing Vehicles
    Kavousi-Fard, Abdollah
    Dabbaghjamanesh, Morteza
    Jin, Tao
    Su, Wencong
    Roustaei, Mahmoud
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (07) : 4478 - 4486
  • [29] LogCTBL: a hybrid deep learning model for log-based anomaly detection
    Huang, Hong
    Luo, Wengang
    Wang, Yunfei
    Zhou, Yinghang
    Huang, Weitao
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (02)
  • [30] Anomaly based network intrusion detection for IoT attacks using deep learning technique
    Sharma, Bhawana
    Sharma, Lokesh
    Lal, Chhagan
    Roy, Satyabrata
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 107