Bayes' Rays: Uncertainty Quantification for Neural Radiance Fields

被引:1
|
作者
Goli, Lily [1 ]
Reading, Cody [2 ]
Sellan, Silvia [1 ]
Jacobson, Alec [1 ,4 ]
Tagliasacchi, Andrea [1 ,2 ,3 ]
机构
[1] Univ Toronto, Toronto, ON, Canada
[2] Simon Fraser Univ, Burnaby, BC, Canada
[3] Google DeepMind, London, England
[4] Adobe Res, San Francisco, CA USA
来源
2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2024年
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1109/CVPR52733.2024.01896
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neural Radiance Fields (NeRFs) have shown promise in applications like view synthesis and depth estimation, but learning from multiview images faces inherent uncertainties. Current methods to quantify them are either heuristic or computationally demanding. We introduce Bayes'Rays, a post-hoc framework to evaluate uncertainty in any pre-trained NeRF without modifying the training process. Our method establishes a volumetric uncertainty field using spatial perturbations and a Bayesian Laplace approximation. We derive our algorithm statistically and show its superior performance in key metrics and applications. More results available at: https://bayesrays.github.io
引用
收藏
页码:20061 / 20070
页数:10
相关论文
共 50 条
  • [1] Estimating 3D Uncertainty Field: Quantifying Uncertainty for Neural Radiance Fields
    Shen, Jianxiong
    Ren, Ruijie
    Ruiz, Adria
    Moreno-Noguer, Francesc
    2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2024, 2024, : 2375 - 2381
  • [2] Leveraging Neural Radiance Fields for Uncertainty-Aware Visual Localization
    Chen, Le
    Chen, Weirong
    Wang, Rui
    Pollefeys, Marc
    2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2024, 2024, : 6298 - 6305
  • [3] Uncertainty-Aware Physical Simulation of Neural Radiance Fields for Fluids
    Lian, Haojie
    Wang, Jiaqi
    Chen, Leilei
    Li, Shengze
    Cao, Ruochen
    Hu, Qingyuan
    Zhao, Peiyun
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 140 (01): : 1143 - 1163
  • [4] Uncertainty Quantification of Neural Reflectance Fields for Underwater Scenes
    Lian, Haojie
    Li, Xinhao
    Chen, Leilei
    Wen, Xin
    Zhang, Mengxi
    Zhang, Jieyuan
    Qu, Yilin
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (02)
  • [5] Neural Transmitted Radiance Fields
    Zhu, Chengxuan
    Wan, Renjie
    Shi, Boxin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [6] Bayesian uncertainty analysis for underwater 3D reconstruction with neural radiance fields
    Lian, Haojie
    Li, Xinhao
    Qu, Yilin
    Du, Jing
    Meng, Zhuxuan
    Liu, Jie
    Chen, Leilei
    APPLIED MATHEMATICAL MODELLING, 2025, 138
  • [7] Density-aware NeRF Ensembles: Quantifying Predictive Uncertainty in Neural Radiance Fields
    Sunderhauf, Niko
    Abou-Chakra, Jad
    Miller, Dimity
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, : 9370 - 9376
  • [8] Stochastic Neural Radiance Fields: Quantifying Uncertainty in Implicit 3D Representations
    Shen, Jianxiong
    Ruiz, Adria
    Agudo, Antonio
    Moreno-Noguer, Francesc
    2021 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2021), 2021, : 972 - 981
  • [9] NeRFReN: Neural Radiance Fields with Reflections
    Guo, Yuan-Chen
    Kang, Di
    Bao, Linchao
    He, Yu
    Zhang, Song-Hai
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 18388 - 18397
  • [10] Locally Stylized Neural Radiance Fields
    Pang, Hong-Wing
    Hua, Binh-Son
    Yeung, Sai-Kit
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 307 - 316