Matrices with hyperbolical Krein space numerical range

被引:0
|
作者
Bebiano, N. [1 ,2 ]
Lemos, R. [3 ,4 ]
Soares, G. [5 ,6 ]
机构
[1] Univ Coimbra, CMUC, P-3001501 Coimbra, Portugal
[2] Univ Coimbra, Math Dept, P-3001501 Coimbra, Portugal
[3] Univ Aveiro, CIDMA, P-3810193 Aveiro, Portugal
[4] Univ Aveiro, Math Dept, P-3810193 Aveiro, Portugal
[5] Univ Tras Os Montes & Alto Douro, CMAT UTAD, P-5000801 Vila Real, Portugal
[6] Univ Tras Os Montes & Alto Douro, Math Dept, P-5000801 Vila Real, Portugal
关键词
Numerical range; Krein space; Centrosymmetric matrices; Tridiagonal matrices; Hyperbolical range theorem; KIPPENHAHN CURVES; OPERATORS; GEOMETRY;
D O I
10.1007/s43036-024-00399-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to matrices with hyperbolical Krein space numerical range. This shape characterizes the 2-by-2 case and persists for certain classes of matrices, independently of their size. Necessary and sufficient conditions for low dimensional tridiagonal matrices to have this shape are obtained involving only the matrix entries.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Numerical range of some doubly stochastic matrices
    Camenga, Kristin A.
    Rault, Patrick X.
    Rossi, Daniel J.
    Sendova, Tsvetanka
    Spitkovsky, Ilya M.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 221 : 40 - 47
  • [32] On the numerical range of matrices over a finite field
    Ballico, E.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 512 : 162 - 171
  • [33] Field quantization in Krein space
    Payandeh, F.
    Mehrafarin, M.
    Takook, M. V.
    PARTICLES, STRINGS, AND COSMOLOGY, 2007, 957 : 249 - +
  • [34] QED in Krein Space Quantization
    A. Zarei
    B. Forghan
    M. V. Takook
    International Journal of Theoretical Physics, 2011, 50 : 2466 - 2476
  • [35] QED in Krein Space Quantization
    Zarei, A.
    Forghan, B.
    Takook, M. V.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (08) : 2466 - 2476
  • [36] On the numerical range of some weighted shift matrices and operators
    Vandanjav, Adiyasuren
    Undrakh, Batzorig
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 449 : 76 - 88
  • [37] Numerical Range of Moore-Penrose Inverse Matrices
    Chien, Mao-Ting
    MATHEMATICS, 2020, 8 (05)
  • [38] Indefinite numerical range of 3 x 3 matrices
    Bebiano, N.
    da Providencia, J.
    Teixeira, R.
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2009, 59 (01) : 221 - 239
  • [39] Spectral inclusion properties of the numerical range in a space with an indefinite metric
    Wu, Deyu
    Chen, Alatancang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (05) : 1131 - 1136
  • [40] TOPOLOGICAL PROPERTIES OF THE BLOCK NUMERICAL RANGE OF OPERATOR MATRICES
    Radl, Agnes
    Wolff, Manfred P. H.
    OPERATORS AND MATRICES, 2020, 14 (04): : 1001 - 1014