Toward Top-Down Stereo Image Quality Assessment via Stereo Attention

被引:0
作者
Li, Sumei [1 ]
Zhang, Huilin [1 ]
Chang, Haoxiang [1 ]
Lin, Peiming [1 ]
Xiang, Wei [2 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
[2] La Trobe Univ, Sch Engn & Math Sci, Melbourne, Vic 3086, Australia
基金
中国国家自然科学基金;
关键词
Human visual system (HVS); stereo attention (SAT); stereo image quality assessment (SIQA); top-down; VISUAL-CORTEX;
D O I
10.1109/TIM.2025.3551432
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Stereo image quality assessment (SIQA) plays a crucial role in evaluating and improving the visual experience of 3D content. Existing visual properties-based methods for the SIQA have achieved promising performance. However, these approaches either ignore the top-down philosophy or make limited attempts, leading to a lack of a comprehensive grasp of the human visual system (HVS) and the SIQA. This article presents a novel stereo attention network (SATNet), which employs a top-down perspective to guide the quality assessment process. Specifically, our generalized stereo attention (SAT) structure adapts components and input/output for stereo scenarios. It leverages the fusion-generated attention map as a higher-level binocular modulator to influence two lower-level monocular features, allowing progressive recalibration of both throughout the pipeline. Additionally, we introduce an energy coefficient (EC) to flexibly tune the magnitude of binocular response, accounting for the fact that binocular responses in the primate primary visual cortex are less than the sum of monocular responses. To extract the most discriminative quality information from the summation and subtraction of the two branches of monocular features, we utilize a dual-pooling strategy that applies min-pooling and max-pooling operations to the respective branches. Experimental results highlight the superiority of our top-down method in advancing the state-of-the-art in the SIQA field. The code is available at https://github.com/HuilinZhang7/SATNet.
引用
收藏
页数:13
相关论文
共 55 条
  • [1] Experimental and theoretical challenges in the search for the quark-gluon plasma:: The STAR Collaboration's critical assessment of the evidence from RHIC collisions
    Adams, J
    Aggarwal, MM
    Ahammed, Z
    Amonett, J
    Anderson, BD
    Arkhipkin, D
    Averichev, GS
    Badyal, SK
    Bai, Y
    Balewski, J
    Barannikova, O
    Barnby, LS
    Baudot, J
    Bekele, S
    Belaga, VV
    Bellingeri-Laurikainen, A
    Bellwied, R
    Berger, J
    Bezverkhny, BI
    Bharadwaj, S
    Bhasin, A
    Bhati, AK
    Bhatia, VS
    Bichsel, H
    Bielcik, J
    Bielcikova, J
    Billmeier, A
    Bland, LC
    Blyth, CO
    Bonner, BE
    Botje, M
    Boucham, A
    Bouchet, J
    Brandin, AV
    Bravar, A
    Bystersky, M
    Cadman, RV
    Cai, XZ
    Caines, H
    Sánchez, MCD
    Castillo, J
    Catu, O
    Cebra, D
    Chajecki, Z
    Chaloupka, P
    Chattopadhyay, S
    Chen, HF
    Chen, Y
    Cheng, J
    Cherney, M
    [J]. NUCLEAR PHYSICS A, 2005, 757 (1-2) : 102 - 183
  • [2] A cortical mechanism for triggering top-down facilitation in visual object recognition
    Bar, M
    [J]. JOURNAL OF COGNITIVE NEUROSCIENCE, 2003, 15 (04) : 600 - 609
  • [3] A MULTI-TASK CONVOLUTIONAL NEURAL NETWORK FOR BLIND STEREOSCOPIC IMAGE QUALITY ASSESSMENT USING NATURALNESS ANALYSIS
    Bourbia, Salima
    Karine, Ayoub
    Chetouani, Aladine
    El Hassoun, Mohammed
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1434 - 1438
  • [4] GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond
    Cao, Yue
    Xu, Jiarui
    Lin, Stephen
    Wei, Fangyun
    Hu, Han
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 1971 - 1980
  • [5] Coarse-to-Fine Feedback Guidance Based Stereo Image Quality Assessment Considering Dominant Eye Fusion
    Chang, Yongli
    Li, Sumei
    Liu, Anqi
    Jin, Jie
    Xiang, Wei
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 8855 - 8867
  • [6] Bidirectional Feature Aggregation Network for Stereo Image Quality Assessment Considering Parallax Attention-Based Binocular Fusion
    Chang, Yongli
    Li, Sumei
    Liu, Anqi
    Zhang, Wenlin
    Jin, Jie
    Xiang, Wei
    [J]. IEEE TRANSACTIONS ON BROADCASTING, 2024, 70 (01) : 278 - 289
  • [7] Full-reference quality assessment of stereopairs accounting for rivalry
    Chen, Ming-Jun
    Su, Che-Chun
    Kwon, Do-Kyoung
    Cormack, Lawrence K.
    Bovik, Alan C.
    [J]. SIGNAL PROCESSING-IMAGE COMMUNICATION, 2013, 28 (09) : 1143 - 1155
  • [8] No-Reference Quality Assessment of Natural Stereopairs
    Chen, Ming-Jun
    Cormack, Lawrence K.
    Bovik, Alan C.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (09) : 3379 - 3391
  • [9] CA-Net: A Novel Cascaded Attention-Based Network for Multistage Glaucoma Classification Using Fundus Images
    Das, Dipankar
    Nayak, Deepak Ranjan
    Pachori, Ram Bilas
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72 : 1 - 10
  • [10] Learning a No-Reference Quality Predictor of Stereoscopic Images by Visual Binocular Properties
    Fang, Yuming
    Yan, Jiebin
    Wang, Jiheng
    Liu, Xuelin
    Zhai, Guangtao
    Le Callet, Patrick
    [J]. IEEE ACCESS, 2019, 7 : 132649 - 132661