Status of the development and testing of in-vessel and ECH-protection components for the ITER low-field side reflectometer

被引:0
|
作者
Muscatello, C. M. [1 ]
Bhatia, R. [2 ]
Boivin, R. L. [1 ]
Cometa, F. [1 ]
Finkenthal, D. K. [3 ]
Fox, D. [1 ]
Gar, R. [1 ]
Harvey, J. [1 ]
Kramer, G. J. [2 ]
Martinez, F. [1 ]
Shirey, S. [1 ]
Sirinelli, A. [4 ]
Thackston, K. [1 ]
Zolfaghari, A. [2 ]
机构
[1] Gen Atom, San Diego, CA 92121 USA
[2] Princeton Plasma Phys Lab, Princeton, NJ USA
[3] Palomar Sci Instruments, San Marcos, CA USA
[4] ITER Org, St Paul Les Durance, France
关键词
ITER; reflectometry; ECH protection; millimeter-wave diagnostics; anti-reflective components;
D O I
10.1088/1361-6587/adc59a
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The ITER Low-Field Side Reflectometer (LFSR) is a critical diagnostic system designed to measure edge electron density profiles, fluctuations, and plasma rotation in ITER. This paper presents the latest developments in the design, testing, and validation of key in-vessel and Electron Cyclotron Heating (ECH) protection components. The LFSR antenna array has been optimized to provide robust coverage over expected plasma vertical displacements and a Doppler measurement for plasma rotation. A comprehensive assessment of a 170-GHz diffraction grating and a novel stray-ECH power monitor demonstrates effectiveness in mitigating the impact of stray ECH power on sensitive microwave electronics. Additionally, an advancement in anti-reflective technology for millimeter waves significantly improves transmission of LFSR's vacuum window while meeting ITER's stringent safety and operational requirements. These results support the continued integration of LFSR into ITER, ensuring its diagnostic capabilities remain resilient under reactor-relevant conditions.
引用
收藏
页数:7
相关论文
共 7 条
  • [1] Neutronics analysis of the in-vessel components of the ITER plasma-position reflectometry system on the low-field side
    Luis, R.
    Moutinho, R.
    Quental, P. B.
    Policarpo, H.
    Varela, P.
    FUSION ENGINEERING AND DESIGN, 2017, 123 : 847 - 851
  • [2] Performance demonstration of vacuum microwave components critical for the operation of the ITER low-field side reflectometer
    Muscatello, C. M.
    Anderson, J. P.
    Boivin, R. L.
    Finkenthal, D. K.
    Gattuso, A.
    Kramer, G. J.
    LeSher, M.
    Mrazkova, T. J.
    Neilson, G. H.
    Peebles, W. A.
    Rhodes, T. L.
    Robinson, J. T.
    Torreblanca, H.
    Zeller, K.
    Zeng, L.
    Zolfaghari, A.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2021, 92 (03):
  • [3] Antenna-plasma coupling calculations for the ITER low-field side reflectometer
    Kramer, G. J.
    Valeo, E. J.
    Zolfaghari, A.
    Bertelli, N.
    NUCLEAR FUSION, 2018, 58 (12)
  • [4] Preliminary design overview and performance assessment of the ITER low-field side reflectometer
    Muscatello, C. M.
    Anderson, C.
    Anderson, J.
    Basile, A.
    Boivin, R. L.
    Duco, M.
    Finkenthal, D. K.
    Gattuso, A.
    Klabacha, J.
    Kramer, G. J.
    LeSher, M.
    Meneses, L.
    Neilson, G. H.
    O'Neill, R.
    Peebles, W. A.
    Seraydarian, R.
    Sibilia, M.
    Sichta, P.
    Sieving, D.
    Sirinelli, A.
    Wang, G.
    Wang, W.
    Zolfaghari, A.
    NUCLEAR FUSION, 2020, 60 (06)
  • [5] 2D reflectometer modelling for optimizing the ITER low-field side X-mode reflectometer system
    Kramer, G. J.
    Nazikian, R.
    Valeo, E. J.
    Budny, R. V.
    Kessel, C.
    Johnson, D.
    NUCLEAR FUSION, 2006, 46 (09) : S846 - S852
  • [6] Testing of the ITER plasma position reflectometry high-field side in-vessel antenna assembly prototype
    Varela, P.
    Silva, A.
    Belo, J. H.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2018, 89 (10):
  • [7] Neutronics Analysis of the In-Vessel Components of the ITER Plasma-Position Reflectometry System on the High-Field Side
    Luis, R.
    Moutinho, R.
    Quental, P. B.
    Policarpo, H.
    Varela, P.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2018, 65 (09) : 2404 - 2411