Spin Filtering with Insulating Altermagnets

被引:5
作者
Samanta, Kartik [1 ,2 ]
Shao, Ding-Fu [3 ]
Tsymbal, Evgeny Y. [1 ,2 ]
机构
[1] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA
[2] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA
[3] Chinese Acad Sci, Inst Solid State Phys, Key Lab Mat Phys, HFIPS, Hefei 230031, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会; 国家重点研发计划;
关键词
Spin filtering; magnetictunnel junction; altermagnet; insulator; tunneling; spintronics; ROOM-TEMPERATURE MAGNETORESISTANCE; NEUTRON-DIFFRACTION; TUNNEL-JUNCTIONS; POLARIZATION; SCATTERING; MNF2; COF2; ZERO;
D O I
10.1021/acs.nanolett.4c05672
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Altermagnetic (AM) materials have recently attracted significant interest due to their nonrelativistic momentum-dependent spin splitting of their electronic band structure which may be useful for antiferromagnetic (AFM) spintronics. So far, however, most research studies have been focused on conducting properties of AM metals and semiconductors, while functional properties of AM insulators have remained largely unexplored. Here, we propose employing AM insulators (AMIs) as efficient spin-filter materials. By analyzing the complex band structure of rutile-type altermagnets MF2 (M = Fe, Co, Ni), we demonstrate that the evanescent states in these AMIs exhibit spin- and momentum-dependent decay rates resulting in momentum-dependent spin polarization of the tunneling current. Using a model of spin-filter tunneling across a spin-dependent potential barrier, we estimate the tunneling magnetoresistance (TMR) effect in spin-filter magnetic tunnel junctions (SF-MTJs) that include two magnetically decoupled MF2 (001) barrier layers. We predict a sizable spin-filter TMR ratio of about 150-170% in SF-MTJs based on the AMIs CoF2 and NiF2 if the Fermi energy is tuned to be close to the valence band maximum. Our results demonstrate that AMIs provide a viable alternative to conventional spin-filter materials, potentially advancing the development of next-generation AFM spintronic devices.
引用
收藏
页码:3150 / 3156
页数:7
相关论文
共 69 条
[41]   Large tunneling magnetoresistance in magnetic tunneling junctions based on two-dimensional CrX3 (X = Br, I) monolayers [J].
Pan, Longfei ;
Huang, Le ;
Zhong, Mianzeng ;
Jiang, Xiang-Wei ;
Deng, Hui-Xiong ;
Li, Jingbo ;
Xia, Jian-Bai ;
Wei, Zhongming .
NANOSCALE, 2018, 10 (47) :22196-22202
[42]   Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers [J].
Parkin, SSP ;
Kaiser, C ;
Panchula, A ;
Rice, PM ;
Hughes, B ;
Samant, M ;
Yang, SH .
NATURE MATERIALS, 2004, 3 (12) :862-867
[43]   Spin Filtering in CrI3 Tunnel Junctions [J].
Paudel, Tula R. ;
Tsymbal, Evgeny Y. .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (17) :15781-15787
[44]   Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction [J].
Qin, Peixin ;
Yan, Han ;
Wang, Xiaoning ;
Chen, Hongyu ;
Meng, Ziang ;
Dong, Jianting ;
Zhu, Meng ;
Cai, Jialin ;
Feng, Zexin ;
Zhou, Xiaorong ;
Liu, Li ;
Zhang, Tianli ;
Zeng, Zhongming ;
Zhang, Jia ;
Jiang, Chengbao ;
Liu, Zhiqi .
NATURE, 2023, 613 (7944) :485-+
[45]   Room temperature spin filtering in epitaxial cobalt-ferrite tunnel barriers [J].
Ramos, A. V. ;
Guittet, M.-J. ;
Moussy, J.-B. ;
Mattana, R. ;
Deranlot, C. ;
Petroff, F. ;
Gatel, C. .
APPLIED PHYSICS LETTERS, 2007, 91 (12)
[46]   Tunneling magnetoresistance in magnetic tunnel junctions with a single ferromagnetic electrode [J].
Samanta, Kartik ;
Jiang, Yuan-Yuan ;
Paudel, Tula R. ;
Shao, Ding-Fu ;
Tsymbal, Evgeny Y. .
PHYSICAL REVIEW B, 2024, 109 (17)
[47]  
Santos T. S., 2019, Spintronics Handbook: Spin Transport and Magnetism
[48]   Observation of spin filtering with a ferromagnetic EuO tunnel barrier [J].
Santos, TS ;
Moodera, JS .
PHYSICAL REVIEW B, 2004, 69 (24) :241203-1
[49]  
Shao D.-F., 2024, npj Spintronics, V2, P13
[50]   Neel Spin Currents in Antiferromagnets [J].
Shao, Ding-Fu ;
Jiang, Yuan-Yuan ;
Ding, Jun ;
Zhang, Shu-Hui ;
Wang, Zi-An ;
Xiao, Rui-Chun ;
Gurung, Gautam ;
Lu, W. J. ;
Sun, Y. P. ;
Tsymbal, Evgeny Y. .
PHYSICAL REVIEW LETTERS, 2023, 130 (21)