Annotated Bioinformatic Pipelines for Genome Assembly and Annotation of Mitochondrial Genomes

被引:0
作者
Winn, Jessica C. [1 ]
Bester-van der Merwe, Aletta E. [1 ]
Maduna, Simo N. [1 ,2 ]
机构
[1] Stellenbosch Univ, Dept Genet, Mol Breeding & Biodivers Grp, Stellenbosch, Western Cape, South Africa
[2] Norwegian Inst Bioecon Res, Dept Ecosyst Barents Reg, Svanhovd Res Stn, Svanvik, Norway
基金
新加坡国家研究基金会;
关键词
Comparative mitogenomics; Hybrid assembly; Intramitochondrial recombination; Next-generation sequencing; TANDEM DUPLICATION; EVOLUTION; ACCURATE; REPEATS; PROGRAM;
D O I
10.21769/BioProtoc.5231
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mitochondrial genomes (mitogenomes) display relatively rapid mutation rates, low sequence recombination, high copy numbers, and maternal inheritance patterns, rendering them valuable blueprints for mapping lineages, uncovering historical migration patterns, understanding intraspecific population dynamics, and investigating how environmental pressures shape traits underpinned by genetic variation. Here, we present the bioinformatic pipeline and code used to assemble and annotate the complete mitogenomes of five houndsharks (Chondrichthyes: Triakidae) and compare them to the mitogenomes of other closely related species. We demonstrate the value of a combined assembly approach for detecting deviations in mitogenome structure and describe how to select an assembly approach that best suits the sequencing data. The datasets required to run our analyses are available on the GitHub and Dryad repositories.
引用
收藏
页数:28
相关论文
共 56 条
[41]   A range of complex probabilistic models for RNA secondary structure prediction that includes the nearest-neighbor model and more [J].
Rivas, Elena ;
Lang, Raymond ;
Eddy, Sean R. .
RNA, 2012, 18 (02) :193-212
[42]   A hotspot of gene order rearrangement by tandem duplication and random loss in the vertebrate mitochondrial genome [J].
San Mauro, D ;
Gower, DJ ;
Zardoya, R ;
Wilkinson, M .
MOLECULAR BIOLOGY AND EVOLUTION, 2006, 23 (01) :227-234
[43]   RNA secondary structure prediction using deep learning with thermodynamic integration [J].
Sato, Kengo ;
Akiyama, Manato ;
Sakakibara, Yasubumi .
NATURE COMMUNICATIONS, 2021, 12 (01)
[44]   MitoFish and MiFish Pipeline: A Mitochondrial Genome Database of Fish with an Analysis Pipeline for Environmental DNA Metabarcoding [J].
Sato, Yukuto ;
Miya, Masaki ;
Fukunaga, Tsukasa ;
Sado, Tetsuya ;
Iwasaki, Wataru .
MOLECULAR BIOLOGY AND EVOLUTION, 2018, 35 (06) :1553-1555
[45]  
Sayers E. W., 2019, GenBank. Nucleic Acids Res. gkz956, DOI 10.1093nargkz956
[46]   Sequencing depth and coverage: key considerations in genomic analyses [J].
Sims, David ;
Sudbery, Ian ;
Ilott, Nicholas E. ;
Heger, Andreas ;
Ponting, Chris P. .
NATURE REVIEWS GENETICS, 2014, 15 (02) :121-132
[47]   The sequence manipulation suite: Java']JavaScript programs for analyzing and formatting protein and DNA sequences [J].
Stothard, P .
BIOTECHNIQUES, 2000, 28 (06) :1102-+
[48]   MEGA11 Molecular Evolutionary Genetics Analysis Version 11 [J].
Tamura, Koichiro ;
Stecher, Glen ;
Kumar, Sudhir .
MOLECULAR BIOLOGY AND EVOLUTION, 2021, 38 (07) :3022-3027
[49]   Repetitive DNA and next-generation sequencing: computational challenges and solutions [J].
Treangen, Todd J. ;
Salzberg, Steven L. .
NATURE REVIEWS GENETICS, 2012, 13 (01) :36-46
[50]   MitoHiFi: a python']python pipeline for mitochondrial genome assembly from PacBio high fidelity reads [J].
Uliano-Silva, Marcela ;
Ferreira, Joao Gabriel R. N. ;
Krasheninnikova, Ksenia ;
Formenti, Giulio ;
Abueg, Linelle W. ;
Torrance, James ;
Myers, Eugene ;
Durbin, Richard A. ;
Blaxter, Mark ;
McCarthy, Shane A. .
BMC BIOINFORMATICS, 2023, 24 (01)