Quality evaluation parameter and classification model for effluents of wastewater treatment plant based on machine learning

被引:9
作者
Chen, Ling [1 ]
Wang, Jiawei [1 ]
Zhu, Mengyuan [1 ]
He, Ruonan [1 ]
Mu, Hongxin [1 ]
Ren, Hongqiang [1 ]
Wu, Bing [1 ]
机构
[1] Nanjing Univ, Sch Environm, State Key Lab Pollut Control & Resource Reuse, 163 Xianlin Ave, Nanjing 210023, Peoples R China
关键词
Municipal wastewater; Machine learning; Parameter screening; Water quality classification model; Biotoxicity;
D O I
10.1016/j.watres.2024.122696
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
With the growing consensus of emerging pollutants and biological toxicity risks in wastewater treatment plant (WWTP) effluents, traditional water quality management based on general chemical parameters no longer meets the new challenges. Here, a first-hand dataset containing 9 conventional parameters, 22 mental and inorganic ions, 25 biotoxicity parameters, and 54 emerging pollutants from effluents of 176 municipal WWTPs across China were measured. Four clustering algorithms and five classification algorithms were applied to 65 well- performing models to determine a novel evaluation parameter system. A total of 14 parameters were selected by semi-supervised machine learning, including TN, TP, NH4+-N, NO2--N, Se, SO42-, Caenorhabditis elegans body width, 72 hpf zebrafish embryo hatching rate, tetracycline, acetaminophen, gemfibrozil (Lopid), PFBA, PFHxA, and HFPO-DA. These parameters were then used to construct a Healthy Effluent Quality Index model (HEQi). The application efficiency of HEQi was compared with other common methods such as the Water Quality Index (WQI), Fuzzy Synthesized Evaluation (FSE), and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) in classifying 176 effluents. Results implicated that under the new evaluation criteria, the major task in North and Northeast China remains to reduce the conventional parameters, especially NO2--N. However, it is necessary to strengthen the removal of biotoxicity and emerging pollutants in parts of Central and Eastern China. This study offers new methodological tools and scientific insights for improving water quality assessment and safe discharge of wastewater.
引用
收藏
页数:9
相关论文
共 48 条
[1]   Critical analysis of literature on low-dose synergy for use in screening chemical mixtures for risk assessment [J].
Boobis, Alan ;
Budinsky, Robert ;
Collie, Shanna ;
Crofton, Kevin ;
Embry, Michelle ;
Felter, Susan ;
Hertzberg, Richard ;
Kopp, David ;
Mihlan, Gary ;
Mumtaz, Moiz ;
Price, Paul ;
Solomon, Keith ;
Teuschler, Linda ;
Yang, Raymond ;
Zaleski, Rosemary .
CRITICAL REVIEWS IN TOXICOLOGY, 2011, 41 (05) :369-383
[2]   Effect-based methods are key. The European Collaborative Project SOLUTIONS recommends integrating effect-based methods for diagnosis and monitoring of water quality [J].
Brack, Werner ;
Ait Aissa, Selim ;
Backhaus, Thomas ;
Dulio, Valeria ;
Escher, Beate I. ;
Faust, Michael ;
Hilscherova, Klara ;
Hollender, Juliane ;
Hollert, Henner ;
Mueller, Christin ;
Munthe, John ;
Posthuma, Leo ;
Seiler, Thomas-Benjamin ;
Slobodnik, Jaroslav ;
Teodorovic, Ivana ;
Tindall, Andrew J. ;
Umbuzeiro, Gisela de Aragao ;
Zhang, Xiaowei ;
Altenburger, Rolf .
ENVIRONMENTAL SCIENCES EUROPE, 2019, 31 (1)
[3]   Toxicology Advances for 21st Century Chemical Pollution [J].
Brooks, Bryan W. ;
Sabo-Attwood, Tara ;
Choi, Kyungho ;
Kim, Sujin ;
Kostal, Jakub ;
LaLone, Carlie A. ;
Langan, Laura M. ;
Margiotta-Casaluci, Luigi ;
You, Jing ;
Zhang, Xiaowei .
ONE EARTH, 2020, 2 (04) :312-316
[4]   Robust predictive modelling of water pollution using biomarker data [J].
Budka, Marcin ;
Gabrys, Bogdan ;
Ravagnan, Elisa .
WATER RESEARCH, 2010, 44 (10) :3294-3308
[5]   Comparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big data [J].
Chen, Kangyang ;
Chen, Hexia ;
Zhou, Chuanlong ;
Huang, Yichao ;
Qi, Xiangyang ;
Shen, Ruqin ;
Liu, Fengrui ;
Zuo, Min ;
Zou, Xinyi ;
Wang, Jinfeng ;
Zhang, Yan ;
Chen, Da ;
Chen, Xingguo ;
Deng, Yongfeng ;
Ren, Hongqiang .
WATER RESEARCH, 2020, 171
[6]   Signposts for Aquatic Toxicity Evaluation in China: Text Mining using Event-Driven Taxonomy within and among Regions [J].
Cheng, Fei ;
Li, Huizhen ;
Brooks, Bryan W. ;
You, Jing .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2021, 55 (13) :8977-8986
[7]   Global patterns and temporal trends of perfluoroalkyl substances in municipal wastewater: A meta-analysis [J].
Cookson, Esther S. ;
Detwiler, Russell L. .
WATER RESEARCH, 2022, 221
[8]   Effluents of wastewater treatment plants promote the rapid stabilization of the antibiotic resistome in receiving freshwater bodies [J].
Corno, Gianluca ;
Yang, Ying ;
Eckert, Ester M. ;
Fontaneto, Diego ;
Fiorentino, Antonino ;
Galafassi, Silvia ;
Zhang, Tong ;
Di Cesare, Andrea .
WATER RESEARCH, 2019, 158 :72-81
[9]   Advancements in effect-based surface water quality assessment [J].
De Baat, M. L. ;
Van der Oost, R. ;
Van der Lee, G. H. ;
Wieringa, N. ;
Hamers, T. ;
Verdonschot, P. F. M. ;
De Voogt, P. ;
Kraak, M. H. S. .
WATER RESEARCH, 2020, 183
[10]   Optimization of water quality index models using machine learning approaches [J].
Ding, Fei ;
Zhang, Wenjie ;
Cao, Shaohua ;
Hao, Shilong ;
Chen, Liangyao ;
Xie, Xin ;
Li, Wenpan ;
Jiang, Mingcen .
WATER RESEARCH, 2023, 243