Enhancing long-term vegetation monitoring in Australia: a new approach for harmonising the Advanced Very High Resolution Radiometer normalised-difference vegetation (NVDI) with MODIS NDVI

被引:1
作者
Burton, Chad A. [1 ]
Rifai, Sami W. [2 ]
Renzullo, Luigi J. [3 ]
Van Dijk, Albert I. J. M. [1 ]
机构
[1] Australian Natl Univ, Fenner Sch Environm & Soc, Canberra, ACT, Australia
[2] Univ Adelaide, Sch Biol Sci, Adelaide, SA, Australia
[3] Bur Meteorol, Hydrol Sci, Canberra, ACT, Australia
关键词
CO2; FERTILIZATION; PHENOLOGY; TRENDS; VARIABILITY; DATASET; CARBON; SHIFTS; COVER; GIMMS; INDEX;
D O I
10.5194/essd-16-4389-2024
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Long-term, reliable datasets of satellite-based vegetation condition are essential for understanding terrestrial ecosystem responses to global environmental change, particularly in Australia, which is characterised by diverse ecosystems and strong interannual climate variability. We comprehensively evaluate several existing global Advanced Very High Resolution Radiometer (AVHRR) normalised-difference vegetation index (NDVI) products for their suitability for long-term vegetation monitoring in Australia. Comparisons with the MODIS NDVI highlight significant deficiencies, particularly over densely vegetated regions. Moreover, all the assessed products failed to adequately reproduce the interannual variability in the pre-MODIS era as indicated by Landsat NDVI anomalies. To address these limitations, we propose a new approach to calibrating and harmonising NOAA's Climate Data Record of AVHRR NDVI to the MODIS MCD43A4 NDVI for Australia using a gradient-boosting decision tree ensemble method. Two versions of the datasets are developed, one incorporating climate data in the predictors ("AusENDVI-clim": Australian Empirical NDVI-climate) and another that is independent of climate data ("AusENDVI-noclim"). These datasets, spanning 1982-2013 at a spatial resolution of 0.05 degrees and with a monthly time step, exhibit strong correlations (r(2)=0.89-0.94) and low mean errors compared with MODIS MCD43A4 NDVI (mean absolute error (MAE) = 0.014-0.028, RMSE = 0.021-0.046), accurately reproducing seasonal cycles over densely vegetated regions. Furthermore, they closely replicate the interannual variability in vegetation condition in the pre-MODIS era. A reliable method for gap-filling the AusENDVI record is also developed that leverages climate, atmospheric CO2 concentration, and woody-cover fraction predictors. The resulting synthetic NDVI dataset shows excellent agreement with the MODIS MCD43A4 NDVI and the recalibrated AVHRR NDVI time series (r(2)=0.82-0.95, MAE = 0.016-0.029, RMSE = 0.039-0.041). Finally, we provide a complete 41-year dataset where the gap-filled AusENDVI-clim from January 1982 to February 2000 is joined with the MODIS MCD43A4 NDVI from March 2000 to December 2022. Analysing 40-year per-pixel trends in Australia's annual maximum NDVI revealed increasing values, and shifts in the timing, of the annual peak NDVI across most of the continent, underscoring the dataset's potential to address crucial questions regarding the changing vegetation phenology and its drivers. The AusENDVI dataset can be used for studying Australia's changing vegetation dynamics and downstream impacts on the terrestrial carbon and water cycles, and it provides a reliable foundation for further research into the drivers of vegetation change. AusENDVI is open access and available at 10.5281/zenodo.10802703 (Burton et al., 2024).
引用
收藏
页码:4389 / 4416
页数:28
相关论文
共 63 条
[1]   Global evaluation of four AVHRR-NDVI data sets: Intercomparison and assessment against Landsat imagery [J].
Beck, Hylke E. ;
McVicar, Tim R. ;
van Dijk, Albert I. J. M. ;
Schellekens, Jaap ;
de Jeu, Richard A. M. ;
Bruijnzeel, L. Adrian .
REMOTE SENSING OF ENVIRONMENT, 2011, 115 (10) :2547-2563
[2]   Bridge to the future: Important lessons from 20 years of ecosystem observations made by the OzFlux network [J].
Beringer, Jason ;
Moore, Caitlin E. ;
Cleverly, Jamie ;
Campbell, David, I ;
Cleugh, Helen ;
De Kauwe, Martin G. ;
Kirschbaum, Miko U. F. ;
Griebel, Anne ;
Grover, Sam ;
Huete, Alfredo ;
Hutley, Lindsay B. ;
Laubach, Johannes ;
Van Niel, Tom ;
Arndt, Stefan K. ;
Bennett, Alison C. ;
Cernusak, Lucas A. ;
Eamus, Derek ;
Ewenz, Cacilia M. ;
Goodrich, Jordan P. ;
Jiang, Mingkai ;
Hinko-Najera, Nina ;
Isaac, Peter ;
Hobeichi, Sanaa ;
Knauer, Juergen ;
Koerber, Georgia R. ;
Liddell, Michael ;
Ma, Xuanlong ;
Macfarlane, Craig ;
McHugh, Ian D. ;
Medlyn, Belinda E. ;
Meyer, Wayne S. ;
Norton, Alexander J. ;
Owens, Jyoteshna ;
Pitman, Andy ;
Pendall, Elise ;
Prober, Suzanne M. ;
Ray, Ram L. ;
Restrepo-Coupe, Natalia ;
Rifai, Sami W. ;
Rowlings, David ;
Schipper, Louis ;
Silberstein, Richard P. ;
Teckentrup, Lina ;
Thompson, Sally E. ;
Ukkola, Anna M. ;
Wall, Aaron ;
Wang, Ying-Ping ;
Wardlaw, Tim J. ;
Woodgate, William .
GLOBAL CHANGE BIOLOGY, 2022, 28 (11) :3489-3514
[3]   CLIMFILL v0.9: a framework for intelligently gap filling Earth observations [J].
Bessenbacher, Verena ;
Seneviratne, Sonia Isabelle ;
Gudmundsson, Lukas .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2022, 15 (11) :4569-4596
[4]   Land surface phenological response to decadal climate variability across Australia using satellite remote sensing [J].
Broich, M. ;
Huete, A. ;
Tulbure, M. G. ;
Ma, X. ;
Xin, Q. ;
Paget, M. ;
Restrepo-Coupe, N. ;
Davies, K. ;
Devadas, R. ;
Held, A. .
BIOGEOSCIENCES, 2014, 11 (18) :5181-5198
[5]  
Burton C., 2024, Zenodo code, DOI [10.5281/zenodo.13831836, DOI 10.5281/ZENODO.13831836]
[6]  
Burton Chad, 2024, Zenodo, DOI 10.5281/ZENODO.10802703
[7]   Validating Digital Earth Australia NBART for the Landsat 9 Underfly of Landsat 8 [J].
Byrne, Guy ;
Broomhall, Mark ;
Walsh, Andrew J. ;
Thankappan, Medhavy ;
Hay, Eric ;
Li, Fuqin ;
McAtee, Brendon ;
Garcia, Rodrigo ;
Anstee, Janet ;
Kerrisk, Gemma ;
Drayson, Nathan ;
Barnetson, Jason ;
Samford, Ian ;
Denham, Robert .
REMOTE SENSING, 2024, 16 (07)
[8]   Multi-decadal increase of forest burned area in Australia is linked to climate change [J].
Canadell, Josep G. ;
Meyer, C. P. ;
Cook, Garry D. ;
Dowdy, Andrew ;
Briggs, Peter R. ;
Knauer, Jurgen ;
Pepler, Acacia ;
Haverd, Vanessa .
NATURE COMMUNICATIONS, 2021, 12 (01)
[9]  
Cawley GC, 2010, J MACH LEARN RES, V11, P2079
[10]   Phenological Changes in the Southern Hemisphere [J].
Chambers, Lynda E. ;
Altwegg, Res ;
Barbraud, Christophe ;
Barnard, Phoebe ;
Beaumont, Linda J. ;
Crawford, Robert J. M. ;
Durant, Joel M. ;
Hughes, Lesley ;
Keatley, Marie R. ;
Low, Matt ;
Morellato, Patricia C. ;
Poloczanska, Elvira S. ;
Ruoppolo, Valeria ;
Vanstreels, Ralph E. T. ;
Woehler, Eric J. ;
Wolfaardt, Anton C. .
PLOS ONE, 2013, 8 (10)