A Tutorial and Use Case Example of the eXtreme Gradient Boosting (XGBoost) Artificial Intelligence Algorithm for Drug Development Applications

被引:6
作者
Wiens, Matthew [1 ]
Verone-Boyle, Alissa [2 ]
Henscheid, Nick [3 ]
Podichetty, Jagdeep T. [3 ]
Burton, Jackson [2 ]
机构
[1] Metrum Res Grp, Boston, MA USA
[2] Biogen, Cambridge, MA 02142 USA
[3] Crit Path Inst, Tucson, AZ USA
来源
CTS-CLINICAL AND TRANSLATIONAL SCIENCE | 2025年 / 18卷 / 03期
关键词
boosting; machine learning; quantitative clinical pharmacology; XGBoost;
D O I
10.1111/cts.70172
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Approaches to artificial intelligence and machine learning (AI/ML) continue to advance in the field of drug development. A sound understanding of the underlying concepts and guiding principles of AI/ML implementation is a prerequisite to identifying which AI/ML approach is most appropriate based on the context. This tutorial focuses on the concepts and implementation of the popular eXtreme gradient boosting (XGBoost) algorithm for classification and regression of simple clinical trial-like datasets. Emphasis is placed on relating the underlying concepts to the code implementation. In doing so, the aim is for the reader to gain knowledge about the underlying algorithm and become better versed with how to implement the algorithm functions for relevant clinical drug development questions. In turn, this will provide practical ML experience which can be applied to algorithms and problems beyond the scope of this tutorial.
引用
收藏
页数:14
相关论文
共 42 条
[1]   Organizational readiness for artificial intelligence in health care: insights for decision-making and practice [J].
Alami, Hassane ;
Lehoux, Pascale ;
Denis, Jean-Louis ;
Motulsky, Aude ;
Petitgand, Cecile ;
Savoldelli, Mathilde ;
Rouquet, Ronan ;
Gagnon, Marie-Pierre ;
Roy, Denis ;
Fortin, Jean-Paul .
JOURNAL OF HEALTH ORGANIZATION AND MANAGEMENT, 2021, 35 (01) :106-114
[2]  
[Anonymous], 2024, XGBoost Parameters
[3]  
[Anonymous], 1990, Liver Disorders., DOI [10.24432/C54G67, DOI 10.24432/C54G67]
[4]   Applying Natural Language Processing to Textual Data From Clinical Data Warehouses: Systematic Review [J].
Bazoge, Adrien ;
Morin, Emmanuel ;
Daille, Beatrice ;
Gourraud, Pierre -Antoine .
JMIR MEDICAL INFORMATICS, 2023, 11
[5]   Machine Learning Predicts Outcomes of Phase III Clinical Trials for Prostate Cancer [J].
Beacher, Felix D. ;
Mujica-Parodi, Lilianne R. ;
Gupta, Shreyash ;
Ancora, Leonardo A. .
ALGORITHMS, 2021, 14 (05)
[6]   The Challenges of Implementing Comprehensive Clinical Data Warehouses in Hospitals [J].
Bocquet, Francois ;
Campone, Mario ;
Cuggia, Marc .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (12)
[7]   Machine learning predicts response to TNF inhibitors in rheumatoid arthritis: results on the ESPOIR and ABIRISK cohorts [J].
Bouget, Vincent ;
Duquesne, Julien ;
Hassler, Signe ;
Cournede, Paul-Henry ;
Fautrel, Bruno ;
Guillemin, Francis ;
Pallardy, Marc ;
Broet, Philippe ;
Mariette, Xavier ;
Bitoun, Samuel .
RMD OPEN, 2022, 8 (02)
[8]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[9]   Machine learning to improve interpretability of clinical, radiological and panel-based genomic data of glioma grade 4 patients undergoing surgical resection [J].
Dal Bo, Michele ;
Polano, Maurizio ;
Ius, Tamara ;
Di Cintio, Federica ;
Mondello, Alessia ;
Manini, Ivana ;
Pegolo, Enrico ;
Cesselli, Daniela ;
Di Loreto, Carla ;
Skrap, Miran ;
Toffoli, Giuseppe .
JOURNAL OF TRANSLATIONAL MEDICINE, 2023, 21 (01)
[10]   Predicting type 1 diabetes in children using electronic health records in primary care in the UK: development and validation of a machine-learning algorithm [J].
Daniel, Rhian ;
Jones, Hywel ;
Gregory, John W. ;
Shetty, Ambika ;
Francis, Nick ;
Paranjothy, Shantini ;
Townson, Julia .
LANCET DIGITAL HEALTH, 2024, 6 (06) :e386-e395