Respiratory Rate Estimation from Thermal Video Data Using Spatio-Temporal Deep Learning

被引:0
作者
Mozafari, Mohsen [1 ]
Law, Andrew J. [1 ,2 ]
Goubran, Rafik A. [1 ]
Green, James R. [1 ]
机构
[1] Carleton Univ, Dept Syst & Comp Engn, Ottawa, ON K1S 5B6, Canada
[2] Natl Res Council Canada NRC, Flight Res Lab, Ottawa, ON K1A 0R6, Canada
关键词
respiration rate estimation; thermal video; deep learning; face detection;
D O I
10.3390/s24196386
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Thermal videos provide a privacy-preserving yet information-rich data source for remote health monitoring, especially for respiration rate (RR) estimation. This paper introduces an end-to-end deep learning approach to RR measurement using thermal video data. A detection transformer (DeTr) first finds the subject's facial region of interest in each thermal frame. A respiratory signal is estimated from a dynamically cropped thermal video using 3D convolutional neural networks and bi-directional long short-term memory stages. To account for the expected phase shift between the respiration measured using a respiratory effort belt vs. a facial video, a novel loss function based on negative maximum cross-correlation and absolute frequency peak difference was introduced. Thermal recordings from 22 subjects, with simultaneous gold standard respiratory effort measurements, were studied while sitting or standing, both with and without a face mask. The RR estimation results showed that our proposed method outperformed existing models, achieving an error of only 1.6 breaths per minute across the four conditions. The proposed method sets a new State-of-the-Art for RR estimation accuracy, while still permitting real-time RR estimation.
引用
收藏
页数:16
相关论文
共 38 条
  • [1] Video-based real-time monitoring for heart rate and respiration rate
    Alnaggar, Mona
    Siam, Ali I.
    Handosa, Mohamed
    Medhat, T.
    Rashad, M. Z.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2023, 225
  • [2] Bennett SL, 2019, IEEE ENG MED BIO, P4504, DOI [10.1109/EMBC.2019.8857951, 10.1109/embc.2019.8857951]
  • [3] Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges
    Bischl, Bernd
    Binder, Martin
    Lang, Michel
    Pielok, Tobias
    Richter, Jakob
    Coors, Stefan
    Thomas, Janek
    Ullmann, Theresa
    Becker, Marc
    Boulesteix, Anne-Laure
    Deng, Difan
    Lindauer, Marius
    [J]. WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2023, 13 (02)
  • [4] Improving Fire Detection Accuracy through Enhanced Convolutional Neural Networks and Contour Techniques
    Buriboev, Abror Shavkatovich
    Rakhmanov, Khoshim
    Soqiyev, Temur
    Choi, Andrew Jaeyong
    [J]. SENSORS, 2024, 24 (16)
  • [5] Carion Nicolas, 2020, Computer Vision - ECCV 2020. 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12346), P213, DOI 10.1007/978-3-030-58452-8_13
  • [6] Contact-Free Respiration Rate Monitoring Using a Pan-Tilt Thermal Camera for Stationary Bike Telerehabilitation Sessions
    Chauvin, Ronan
    Hamel, Mathieu
    Briere, Simon
    Ferland, Francois
    Grondin, Francois
    Letourneau, Dominic
    Tousignant, Michel
    Michaud, Francois
    [J]. IEEE SYSTEMS JOURNAL, 2016, 10 (03): : 1046 - 1055
  • [7] Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers
    Chefer, Hila
    Gur, Shir
    Wolf, Lior
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 387 - 396
  • [8] Chen ML, 2019, 2019 IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL & HEALTH INFORMATICS (BHI)
  • [9] DeepPhys: Video-Based Physiological Measurement Using Convolutional Attention Networks
    Chen, Weixuan
    McDuff, Daniel
    [J]. COMPUTER VISION - ECCV 2018, PT II, 2018, 11206 : 356 - 373
  • [10] Cho Y, 2017, INT CONF AFFECT, P456, DOI 10.1109/ACII.2017.8273639