Edge-guided Contextual Attention Fusion Network for Camouflaged Object Detection

被引:0
作者
Hu, Bo [1 ]
Chen, Sibao [1 ]
机构
[1] Anhui Univ, Sch Comp Sci & Technol, Anhui Prov Key Lab Informat Mat & Intelligent Sen, Hefei 230601, Anhui, Peoples R China
来源
PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CYBER SECURITY, ARTIFICIAL INTELLIGENCE AND DIGITAL ECONOMY, CSAIDE 2024 | 2024年
关键词
Camouflaged object detection; Transformer encoder; Contextual-aware learning; Feature fusion;
D O I
10.1145/3672919.3672940
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Camouflaged object detection (COD), with the aim of detecting camouflaged objects from similar backgrounds, is a rewarding but challenging task. A major challenge is that intrinsic similarity between foreground object and background surroundings makes existing methods based on CNNs difficult to accurately identify objects. For that purpose, we propose a novel edge-guided contextual attention fusion network (ECAFNet) in this paper. Specifically, instead of using traditional CNN encoder, we adopt an effective transformer encoder, which can learn more robust and precise representations for the image features. Besides, we introduce three novel modules including edge generation module (EGM) to get object edges for more accurate segmentation of objects, edge-guided receptive field module (ERFM) to enlarge receptive field to capture more robust features, and contextual attention fusion module (CAFM) to closely fuse multiscale features. Extensive experiments on three challenging benchmark datasets indicate that the proposed ECAFNet is an efficient COD method and significantly surpasses the state-of-the-art models.
引用
收藏
页码:108 / 112
页数:5
相关论文
共 12 条
[1]   Attentional Feature Fusion [J].
Dai, Yimian ;
Gieseke, Fabian ;
Oehmcke, Stefan ;
Wu, Yiquan ;
Barnard, Kobus .
2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, :3559-3568
[2]   Camouflaged Object Detection [J].
Fan, Deng-Ping ;
Ji, Ge-Peng ;
Sun, Guolei ;
Cheng, Ming-Ming ;
Shen, Jianbing ;
Shao, Ling .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :2774-2784
[3]   Visual Saliency Transformer [J].
Liu, Nian ;
Zhang, Ni ;
Wan, Kaiyuan ;
Shao, Ling ;
Han, Junwei .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :4702-4712
[4]   Simultaneously Localize, Segment and Rank the Camouflaged Objects [J].
Lv, Yunqiu ;
Zhang, Jing ;
Dai, Yuchao ;
Li, Aixuan ;
Liu, Bowen ;
Barnes, Nick ;
Fan, Deng-Ping .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :11586-11596
[5]   Zoom In and Out: A Mixed-scale Triplet Network for Camouflaged Object Detection [J].
Pang, Youwei ;
Zhao, Xiaoqi ;
Xiang, Tian-Zhu ;
Zhang, Lihe ;
Lu, Huchuan .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :2150-2160
[6]  
Sun YJ, 2022, Arxiv, DOI [arXiv:2207.00794, DOI 10.48550/ARXIV.2207.00794]
[7]  
Sun Yujia., 2021, PREPRINT, DOI DOI 10.48550/ARXIV.2105.12555
[8]   Anabranch network for camouflaged object segmentation [J].
Trung-Nghia Le ;
Nguyen, Tam, V ;
Nie, Zhongliang ;
Minh-Triet Tran ;
Sugimoto, Akihiro .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2019, 184 :45-56
[9]   PVT v2: Improved baselines with Pyramid Vision Transformer [J].
Wang, Wenhai ;
Xie, Enze ;
Li, Xiang ;
Fan, Deng-Ping ;
Song, Kaitao ;
Liang, Ding ;
Lu, Tong ;
Luo, Ping ;
Shao, Ling .
COMPUTATIONAL VISUAL MEDIA, 2022, 8 (03) :415-424
[10]  
Xie EZ, 2021, ADV NEUR IN, V34