Tuning the Mesopore Structure of Polyethylene Glycol Terephthalate (PET)-Derived Hard Carbon for High-Capacity Sodium-Ion Batteries

被引:0
作者
Wang, Chupeng [1 ]
Luo, Mingsheng [1 ]
Song, Shiqi [1 ]
Tang, Maochong [1 ]
Wang, Xiaoxia [2 ]
Liu, Hui [3 ]
机构
[1] East China Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai 200237, Peoples R China
[2] East China Univ Sci & Technol, Sch Mech & Power Engn, Shanghai 200237, Peoples R China
[3] Zhuguangya Inst Adv Sci & Technol, Shanghai 201306, Peoples R China
关键词
hard carbon; sodium-ion batteries; PET plastic waste; mesopore; ANODE MATERIALS; STORAGE; INSERTION; LITHIUM;
D O I
10.3390/ma18051166
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hard carbon (HC) is considered to be a highly promising anode material for sodium-ion batteries. However, the synthesis conditions and pore structure regulation are still challenging for high-capacity sodium-ion storage. In this study, HCs using polyethylene glycol terephthalate (PET) as a carbon resource and ZnO as a nanopore template were synthesized and systematically investigated. By optimizing the additive amount of zinc gluconate, the starting material for ZnO, PET-derived HCs with a proper mesoporous structure were obtained. The as-prepared hard carbon demonstrated a high reversible capacity of 389.42 mAh<middle dot>g-1 at 20 mA<middle dot>g-1, with the plateau capacity accounting for 68%. After 75 cycles, the discharge capacity stabilized at 367.73 mAh<middle dot>g-1 with a retention ratio of 89.4%. The rate performance test indicated that a proper mesopore structure helped to improve the sodium-ion diffusion coefficient, effectively enhancing the charge-storage kinetics. This work provides a promising strategy for converting PET into valuable carbon materials for application in the field of renewable energy technology.
引用
收藏
页数:15
相关论文
共 52 条
[1]   Extended plateau capacity of phosphorus-doped hard carbon used as an anode in Na- and K-ion batteries [J].
Alvin, Stevanus ;
Chandra, Christian ;
Kim, Jaehoon .
CHEMICAL ENGINEERING JOURNAL, 2020, 391
[2]   Revealing sodium ion storage mechanism in hard carbon [J].
Alvin, Stevanus ;
Yoon, Dohyeon ;
Chandra, Christian ;
Cahyadi, Handi Setiadi ;
Park, Jae-Ho ;
Chang, Wonyoung ;
Chung, Kyung Yoon ;
Kim, Jaehoon .
CARBON, 2019, 145 :67-81
[3]   LAMELLAR COMPOUND OF SODIUM WITH GRAPHITE [J].
ASHER, RC ;
WILSON, SA .
NATURE, 1958, 181 (4606) :409-410
[4]   A revised mechanistic model for sodium insertion in hard carbons [J].
Au, Heather ;
Alptekin, Hande ;
Jensen, Anders C. S. ;
Olsson, Emilia ;
O'Keefe, Christopher A. ;
Smith, Thomas ;
Crespo-Ribadeneyra, Maria ;
Headen, Thomas F. ;
Grey, Clare P. ;
Cai, Qiong ;
Drew, Alan J. ;
Titirici, Maria-Magdalena .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) :3469-3479
[5]   Impact of biomass inorganic impurities on hard carbon properties and performance in Na-ion batteries [J].
Beda, Adrian ;
Le Meins, Jean-Marc ;
Taberna, Pierre-Louis ;
Simon, Patrice ;
Ghimbeu, Camelia Matei .
SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2020, 26
[6]   Structural Engineering of Multishelled Hollow Carbon Nanostructures for High-Performance Na-Ion Battery Anode [J].
Bin, De-Shan ;
Li, Yunming ;
Sun, Yong-Gang ;
Duan, Shu-Yi ;
Lu, Yaxiang ;
Ma, Jianmin ;
Cao, An-Min ;
Hu, Yong-Sheng ;
Wan, Li-Jun .
ADVANCED ENERGY MATERIALS, 2018, 8 (26)
[7]   Unveiling pseudocapacitive behavior of hard carbon anode materials for sodium-ion batteries [J].
Bobyleva, Zoia V. ;
Drozhzhin, Oleg A. ;
Dosaev, Kirill A. ;
Kamiyama, Azusa ;
Ryazantsev, Sergey V. ;
Komaba, Shinichi ;
Antipov, Evgeny V. .
ELECTROCHIMICA ACTA, 2020, 354
[8]   New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon [J].
Bommier, Clement ;
Surta, Todd Wesley ;
Dolgos, Michelle ;
Ji, Xiulei .
NANO LETTERS, 2015, 15 (09) :5888-5892
[9]   Direct conversion of ester bond-rich waste plastics into hard carbon for high-performance sodium storage [J].
Chen, Dequan ;
Luo, Kangying ;
Yang, Zhiwei ;
Zhong, Yanjun ;
Wu, Zhenguo ;
Song, Yang ;
Chen, Guang ;
Wang, Gongke ;
Zhong, Benhe ;
Guo, Xiaodong .
CARBON, 2021, 173 :253-261
[10]   Carbonization: A feasible route for reutilization of plastic wastes [J].
Chen, Shuiliang ;
Liu, Zheng ;
Jiang, Shaohua ;
Hou, Haoqing .
SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 710