Mapping Data to Concepts: Enhancing Quantum Neural Network Transparency with Concept-Driven Quantum Neural Networks

被引:0
作者
Tian, Jinkai [1 ]
Yang, Wenjing [2 ]
机构
[1] Intelligent Game & Decis Lab, Beijing 100071, Peoples R China
[2] Natl Univ Def Technol, Coll Comp Sci & Technol, Dept Intelligent Data Sci, Changsha 410073, Peoples R China
基金
中国国家自然科学基金;
关键词
quantum artifical intelligence; quantum neural networks; explainable artificial intelligence; autoencoder; concept-driven; BLACK-BOX;
D O I
10.3390/e26110902
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce the concept-driven quantum neural network (CD-QNN), an innovative architecture designed to enhance the interpretability of quantum neural networks (QNNs). CD-QNN merges the representational capabilities of QNNs with the transparency of self-explanatory models by mapping input data into a human-understandable concept space and making decisions based on these concepts. The algorithmic design of CD-QNN is comprehensively analyzed, detailing the roles of the concept generator, feature extractor, and feature integrator in improving and balancing model expressivity and interpretability. Experimental results demonstrate that CD-QNN maintains high predictive accuracy while offering clear and meaningful explanations of its decision-making process. This paradigm shift in QNN design underscores the growing importance of interpretability in quantum artificial intelligence, positioning CD-QNN and its derivative technologies as pivotal in advancing reliable and interpretable quantum intelligent systems for future research and applications.
引用
收藏
页数:21
相关论文
共 86 条
[1]   Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI) [J].
Adadi, Amina ;
Berrada, Mohammed .
IEEE ACCESS, 2018, 6 :52138-52160
[2]  
Alvarez-Melis D, 2018, ADV NEUR IN, V31
[3]   Quantum Boltzmann Machine [J].
Amin, Mohammad H. ;
Andriyash, Evgeny ;
Rolfe, Jason ;
Kulchytskyy, Bohdan ;
Melko, Roger .
PHYSICAL REVIEW X, 2018, 8 (02)
[4]  
Arrieta AB, 2019, Arxiv, DOI arXiv:1910.10045
[5]   Understanding the role of individual units in a deep neural network [J].
Bau, David ;
Zhu, Jun-Yan ;
Strobelt, Hendrik ;
Lapedriza, Agata ;
Zhou, Bolei ;
Torralba, Antonio .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (48) :30071-30078
[6]   Speeded-Up Robust Features (SURF) [J].
Bay, Herbert ;
Ess, Andreas ;
Tuytelaars, Tinne ;
Van Gool, Luc .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2008, 110 (03) :346-359
[7]   Parameterized quantum circuits as machine learning models [J].
Benedetti, Marcello ;
Lloyd, Erika ;
Sack, Stefan ;
Fiorentini, Mattia .
QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (04)
[8]   Representation Learning: A Review and New Perspectives [J].
Bengio, Yoshua ;
Courville, Aaron ;
Vincent, Pascal .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) :1798-1828
[9]   Quantum machine learning [J].
Biamonte, Jacob ;
Wittek, Peter ;
Pancotti, Nicola ;
Rebentrost, Patrick ;
Wiebe, Nathan ;
Lloyd, Seth .
NATURE, 2017, 549 (7671) :195-202
[10]   SEDE-GPS: socio-economic data enrichment based on GPS information [J].
Sperlea, Theodor ;
Fueser, Stefan ;
Boenigk, Jens ;
Heider, Dominik .
BMC BIOINFORMATICS, 2018, 19