Using Machine Learning to Derive Neurobiological Subtypes of General Psychopathology in Late Childhood

被引:0
|
作者
Reimann, Gabrielle E. [1 ]
Dupont, Randolph M. [2 ]
Sotiras, Aristeidis [3 ,4 ]
Earnest, Tom [3 ,4 ]
Jeong, Hee Jung [1 ]
Durham, E. Leighton [1 ]
Archer, Camille [1 ]
Moore, Tyler M. [5 ]
Lahey, Benjamin B. [6 ,7 ]
Kaczkurkin, Antonia N. [1 ]
机构
[1] Vanderbilt Univ, Coll Arts & Sci, Dept Psychol, PMB 407817, 2301 Vanderbilt Pl, Nashville, TN 37240 USA
[2] Univ Nevada, Dept Psychol, Las Vegas, NV USA
[3] Washington Univ St Louis, Dept Radiol, St Louis, MO USA
[4] Washington Univ St Louis, Inst Informat Data Sci & Biostat, St Louis, MO USA
[5] Univ Penn, Perelman Sch Med, Dept Psychiat, Philadelphia, PA USA
[6] Univ Chicago, Dept Publ Hlth Sci, Chicago, IL USA
[7] Univ Chicago, Dept Psychiat & Behav Neurosci, Chicago, IL USA
来源
JOURNAL OF PSYCHOPATHOLOGY AND CLINICAL SCIENCE | 2024年 / 133卷 / 08期
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
machine learning subtypes; general psychopathology; internalizing; conduct problems; attention-deficit/hyperactivity disorder; HETEROGENEITY; SCHIZOPHRENIA; DISORDER; ANXIETY;
D O I
10.1037/abn0000898
中图分类号
B849 [应用心理学];
学科分类号
040203 ;
摘要
Traditional mental health diagnoses rely on symptom-based classifications. Yet this approach can oversimplify clinical presentations as diagnoses often do not adequately map onto neurobiological features. Alternatively, our study used structural imaging data and a semisupervised machine learning technique, heterogeneity through discriminative analysis, to identify neurobiological subtypes in 9- to 10-year-olds with high psychopathology endorsements (n = 9,027). Our model revealed two stable neurobiological subtypes (adjusted Rand index = 0.38). Subtype 1 showed smaller structural properties, elevated conduct problems and attention-deficit/hyperactivity disorder symptoms, and impaired cognitive performance compared to Subtype 2 and typically developing youth. Subtype 2 had larger structural properties, cognitive abilities comparable to typically developing youth, and elevated internalizing symptoms relative to Subtype 1 and typically developing youth. These subtypes remained stable in their neurobiological characteristics, cognitive ability, and associated psychopathology traits over time. Taken together, our data-driven approach uncovered evidence of neural heterogeneity as demonstrated by structural patterns that map onto divergent profiles of psychopathology symptoms and cognitive performance in youth.
引用
收藏
页码:647 / 655
页数:9
相关论文
共 13 条
  • [1] Neurobiological Divergence of the Positive and Negative Schizophrenia Subtypes Identified on a New Factor Structure of Psychopathology Using Non-negative Factorization: An International Machine Learning Study
    Chen, Ji
    Patil, Kaustubh R.
    Weis, Susanne
    Sim, Kang
    Nickl-Jockschat, Thomas
    Zhou, Juan
    Aleman, Andre
    Sommer, Iris E.
    Liemburg, Edith J.
    Hoffstaedter, Felix
    Habel, Ute
    Derntl, Birgit
    Liu, Xiaojin
    Fischer, Jona M.
    Kogler, Lydia
    Regenbogen, Christina
    Diwadkar, Vaibhav A.
    Stanley, Jeffrey A.
    Riedl, Valentin
    Jardri, Renaud
    Gruber, Oliver
    Sotiras, Aristeidis
    Davatzikos, Christos
    Eickhoff, Simon B.
    Bartels-Velthuis, Agna A.
    Bruggeman, Richard
    Castelein, Stynke
    Jorg, Frederike
    Pijnenborg, Gerdina H. M.
    Knegtering, Henderikus
    Visser, Ellen
    BIOLOGICAL PSYCHIATRY, 2020, 87 (03) : 282 - 293
  • [2] Using Genetics to Examine a General Liability to Childhood Psychopathology
    Riglin, Lucy
    Thapar, Ajay K.
    Leppert, Beate
    Martin, Joanna
    Richards, Alexander
    Anney, Richard
    Davey Smith, George
    Tilling, Kate
    Stergiakouli, Evie
    Lahey, Benjamin B.
    O'Donovan, Michael C.
    Collishaw, Stephan
    Thapar, Anita
    BEHAVIOR GENETICS, 2020, 50 (04) : 213 - 220
  • [3] Two distinc neuroanatomica subtypes of schizophrenia revealed using machine learning
    Chand, Ganesh B.
    Dwyer, Dominic B.
    Erus, Guray
    Sotiras, Aristeidis
    Varol, Erdem
    Srinivasan, Dhivya
    Doshi, Jimit
    Pomponio, Raymond
    Pigoni, Alessandro
    Dazzan, Paola
    Kahn, Rene S.
    Schnack, Hugo G.
    Zanetti, Marcus V.
    Meisenzahl, Eva
    Busatto, Geraldo F.
    Crespo-Facorro, Benedicto
    Pantelis, Christos
    Wood, Stephen J.
    Zhuo, Chuanjun
    Shinohara, Russell T.
    Shou, Haochang
    Fan, Yong
    Gur, Ruben C.
    Gur, Raquel E.
    Satterthwaite, Theodore D.
    Koutsouleris, Nikolaos
    Wolf, Daniel H.
    Davatzikos, Christos
    BRAIN, 2020, 143 : 1027 - 1038
  • [4] Diagnosis of Schizophrenia and Its Subtypes Using MRI and Machine Learning
    Tavakoli, Hosna
    Rostami, Reza
    Shalbaf, Reza
    Nazem-Zadeh, Mohammad-Reza
    BRAIN AND BEHAVIOR, 2025, 15 (01):
  • [5] Diagnostic classification of specific phobia subtypes using structural MRI data: a machine-learning approach
    Lueken, Ulrike
    Hilbert, Kevin
    Wittchen, Hans-Ulrich
    Reif, Andreas
    Hahn, Tim
    JOURNAL OF NEURAL TRANSMISSION, 2015, 122 (01) : 123 - 134
  • [6] Monitoring of COVID-19 pandemic-related psychopathology using machine learning
    Enevoldsen, Kenneth C.
    Danielsen, Andreas A.
    Rohde, Christopher
    Jefsen, Oskar H.
    Nielbo, Kristoffer L.
    Ostergaard, Soren D.
    ACTA NEUROPSYCHIATRICA, 2022, 34 (03): : 148 - 152
  • [7] General Psychopathology and Trait Aggression Shared Common Psychological Characteristics in Community Youths and Young Adults: A Machine Learning and Network Approach
    Wong, Ting Yat
    Fang, Zhiqian
    Cheung, Charlton
    Suen, Yi Nam
    Hui, Christy L. M.
    Chan, Sherry Kit Wa
    Lee, Edwin H. M.
    Lui, Simon S. Y.
    Wong, S. M. Corine
    Chang, Wing Chung
    Sham, Pak Chung
    Chen, Eric Y. H.
    BIOLOGICAL PSYCHIATRY, 2023, 93 (09) : S40 - S40
  • [8] Identifying and evaluating clinical subtypes of Alzheimer's disease in care electronic health records using unsupervised machine learning
    Alexander, Nonie
    Alexander, Daniel C.
    Barkhof, Frederik
    Denaxas, Spiros
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2021, 21 (01)
  • [9] Modeling anxiety and fear of COVID-19 using machine learning in a sample of Chinese adults: associations with psychopathology, sociodemographic, and exposure variables
    Elhai, Jon D.
    Yang, Haibo
    McKay, Dean
    Asmundson, Gordon J. G.
    Montag, Christian
    ANXIETY STRESS AND COPING, 2021, 34 (02): : 130 - 144
  • [10] Multiclass Classification for the Differential Diagnosis on the ADHD Subtypes Using Recursive Feature Elimination and Hierarchical Extreme Learning Machine: Structural MRI Study
    Qureshi, Muhammad Naveed Iqbal
    Min, Beomjun
    Jo, Hang Joon
    Lee, Boreom
    PLOS ONE, 2016, 11 (08):