Machine Learning-Assisted Prediction and Generation of Antimicrobial Peptides

被引:1
作者
Bhangu, Sukhvir Kaur [1 ]
Welch, Nicholas [1 ]
Lewis, Morgan [2 ]
Li, Fanyi [1 ]
Gardner, Brint [3 ]
Thissen, Helmut [1 ]
Kowalczyk, Wioleta [1 ]
机构
[1] CSIRO Mfg, Res Way, Clayton, Vic 3168, Australia
[2] CSIRO Informat Management & Technol, Kensington, WA 6151, Australia
[3] CSIRO Informat Management & Technol, Res Way, Clayton, Vic 3168, Australia
来源
SMALL SCIENCE | 2025年 / 5卷 / 06期
关键词
antimicrobial peptides; antimicrobial resistances; bacteria; machine learning; multidrug resistances; STRATEGIES; !text type='PYTHON']PYTHON[!/text; DESIGN; TOOLS;
D O I
10.1002/smsc.202400579
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Antimicrobial peptides (AMPs) offer a highly potent alternative solution due to their broad-spectrum activity and minimum resistance development against the rapidly evolving antibiotic-resistant pathogens. Herein, to accelerate the discovery process of new AMPs, a predictive and generative algorithm is build, which constructs new peptide sequences, scores their antimicrobial activity using a machine learning (ML) model, identifies amino acid motifs, and assembles high-ranking motifs into new peptide sequences. The eXtreme Gradient Boosting model achieves an accuracy of approximate to 87% in distinguishing between AMPs and non-AMPs. The generated peptide sequences are experimentally validated against the bacterial pathogens, and an accuracy of approximate to 60% is achieved. To refine the algorithm, the physicochemical features are analyzed, particularly charge and hydrophobicity of experimentally validated peptides. The peptides with specific range of charge and hydrophobicity are then removed, which lead to a substantial increase in an experimental accuracy, from approximate to 60% to approximate to 80%. Furthermore, generated peptides are active against different fungal strains with minimal off-target toxicity. In summary, in silico predictive and generative models for functional motif and AMP discovery are powerful tools for engineering highly effective AMPs to combat multidrug resistant pathogens.
引用
收藏
页数:14
相关论文
共 50 条
[1]  
A. M. F. T, 2019, THESIS U MINHO PORTU
[2]  
Ali Z A., 2023, Acad. J. Nawroz Univ, V12, P320, DOI DOI 10.25007/AJNU.V12N2A1612
[3]   Computational Methods and Tools in Antimicrobial Peptide Research [J].
Aronica, Pietro G. A. ;
Reid, Lauren M. ;
Desai, Nirali ;
Li, Jianguo ;
Fox, Stephen J. ;
Yadahalli, Shilpa ;
Essex, Jonathan W. ;
Verma, Chandra S. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (07) :3172-3196
[4]   STREME: accurate and versatile sequence motif discovery [J].
Bailey, Timothy L. .
BIOINFORMATICS, 2021, 37 (18) :2834-2840
[5]  
Bergstra J., 2013, P 30 INT C MACH LEAR, P115, DOI DOI 10.5555/3042817.3042832
[6]   CalcAMP: A New Machine Learning Model for the Accurate Prediction of Antimicrobial Activity of Peptides [J].
Bournez, Colin ;
Riool, Martijn ;
de Boer, Leonie ;
Cordfunke, Robert A. ;
de Best, Leonie ;
van Leeuwen, Remko ;
Drijfhout, Jan Wouter ;
Zaat, Sebastian A. J. ;
van Westen, Gerard J. P. .
ANTIBIOTICS-BASEL, 2023, 12 (04)
[7]   Design and Synthesis of Novel Antimicrobial Agents [J].
Breijyeh, Zeinab ;
Karaman, Rafik .
ANTIBIOTICS-BASEL, 2023, 12 (03)
[8]   Biopython']python: freely available Python']Python tools for computational molecular biology and bioinformatics [J].
Cock, Peter J. A. ;
Antao, Tiago ;
Chang, Jeffrey T. ;
Chapman, Brad A. ;
Cox, Cymon J. ;
Dalke, Andrew ;
Friedberg, Iddo ;
Hamelryck, Thomas ;
Kauff, Frank ;
Wilczynski, Bartek ;
de Hoon, Michiel J. L. .
BIOINFORMATICS, 2009, 25 (11) :1422-1423
[9]   Role of antibiotic stress in phenotypic switching to persister cells of antibiotic-resistant Staphylococcus aureus [J].
Dawan, Jirapat ;
Wei, Shuai ;
Ahn, Juhee .
ANNALS OF MICROBIOLOGY, 2020, 70 (01)
[10]   Review: Lessons Learned From Clinical Trials Using Antimicrobial Peptides (AMPs) [J].
Dijksteel, Gabrielle S. ;
Ulrich, Magda M. W. ;
Middelkoop, Esther ;
Boekema, Bouke K. H. L. .
FRONTIERS IN MICROBIOLOGY, 2021, 12