Super-resolution Deep Learning Reconstruction for 3D Brain MR Imaging: Improvement of Cranial Nerve Depiction and Interobserver Agreement in Evaluations of Neurovascular Conflict

被引:7
作者
Yasaka, Koichiro [1 ,2 ,3 ]
Kanzawa, Jun [1 ,3 ]
Nakaya, Moto [1 ,3 ]
Kurokawa, Ryo [1 ,3 ]
Tajima, Taku [3 ]
Akai, Hiroyuki [2 ,3 ,4 ]
Yoshioka, Naoki [2 ,3 ]
Akahane, Masaaki [3 ]
Ohtomo, Kuni [3 ,5 ]
Abe, Osamu [1 ,3 ]
Kiryu, Shigeru [2 ,3 ]
机构
[1] Univ Tokyo, Grad Sch Med, Dept Radiol, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1138655, Japan
[2] Int Univ Hlth & Welf, Dept Radiol, Narita Hosp, 852 Hatakeda, Narita, Chiba 2860124, Japan
[3] Int Univ Hlth, Welf Mita Hosp, Dept Radiol, 1-4-3 Mita,Minato Ku, Tokyo 1088329, Japan
[4] Univ Tokyo, Inst Med Sci, Dept Radiol, 4-6-1 Shirokanedai,Minato Ku, Tokyo 1088639, Japan
[5] Int Univ Hlth & Welf, 2600-1 Ktiakanemaru, Ohtawara, Tochigi 3248501, Japan
关键词
Cranial nerve; Magnetic Resonance Imaging; Deep Learning; NOISE-REDUCTION; FEASIBILITY;
D O I
10.1016/j.acra.2024.06.010
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Rationale and Objectives: To determine if super-resolution deep learning reconstruction (SR-DLR) improves the depiction of cranial nerves and interobserver agreement when assessing neurovascular conflict in 3D fast asymmetric spin echo (3D FASE) brain MR images, as compared to deep learning reconstruction (DLR). Materials and Methods: This retrospective study involved reconstructing 3D FASE MR images of the brain for 37 patients using SR-DLR and DLR. Three blinded readers conducted qualitative image analyses, evaluating the degree of neurovascular conflict, structure depiction, sharpness, noise, and diagnostic acceptability. Quantitative analyses included measuring edge rise distance (ERD), edge rise slope (ERS), and full width at half maximum (FWHM) using the signal intensity profile along a linear region of interest across the center of the basilar artery. Results: Interobserver agreement on the degree of neurovascular conflict of the facial nerve was generally higher with SR-DLR (0.429-0.923) compared to DLR (0.175-0.689). SR-DLR exhibited increased subjective image noise compared to DLR (o >= 0.008). However, all three readers found SR-DLR significantly superior in terms of sharpness (o < 0.001); cranial nerve depiction, particularly of facial and acoustic nerves, as well as the osseous spiral lamina (o < 0.001); and diagnostic acceptability (o <= 0.002). The FWHM (mm)/ ERD (mm)/ERS (mm-1) for SR-DLR and DLR was 3.1-4.3/0.9-1.1/8795.5-10,703.5 and 3.3-4.8/1.4-2.1/5157.9-7705.8, respectively, with SR-DLR's image sharpness being significantly superior (o <= 0.001). Conclusion: SR-DLR enhances image sharpness, leading to improved cranial nerve depiction and a tendency for greater interobserver agreement regarding facial nerve neurovascular conflict.
引用
收藏
页码:5118 / 5127
页数:10
相关论文
共 20 条
[1]   Commercially Available Deep-learning-reconstruction of MR Imaging of the Knee at 1.5T Has Higher Image Quality Than Conventionally-reconstructed Imaging at 3T: A Normal Volunteer Study [J].
Akai, Hiroyuki ;
Yasaka, Koichiro ;
Sugawara, Haruto ;
Tajima, Taku ;
Akahane, Masaaki ;
Yoshioka, Naoki ;
Ohtomo, Kuni ;
Abe, Osamu ;
Kiryu, Shigeru .
MAGNETIC RESONANCE IN MEDICAL SCIENCES, 2023, 22 (03) :353-360
[2]   Deep Learning: A Primer for Radiologists [J].
Chartrand, Gabriel ;
Cheng, Phillip M. ;
Vorontsov, Eugene ;
Drozdzal, Michal ;
Turcotte, Simon ;
Pal, Christopher J. ;
Kadoury, Samuel ;
Tang, An .
RADIOGRAPHICS, 2017, 37 (07) :2113-2131
[3]   High-Resolution 3D MR Imaging of the Trochlear Nerve [J].
Choi, B. S. ;
Kim, J. H. ;
Jung, C. ;
Hwang, J. -M. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2010, 31 (06) :1076-1079
[4]   Role of Fused Three-Dimensional Time-of-Flight Magnetic Resonance Angiography and 3-Dimensional T2-Weighted Imaging Sequences in Neurovascular Compression [J].
Gamaleldin, Omneya A. ;
Donia, Mohamed Mahmoud ;
Elsebaie, Nermeen A. ;
Abdelrazek, Ahmed Abdelkhalek ;
Rayan, Tarek ;
Khalifa, Mohamed Hossameldin .
WORLD NEUROSURGERY, 2020, 133 :E180-E186
[5]  
Higaki T, 2017, DATA BRIEF, V13, P437, DOI 10.1016/j.dib.2017.06.024
[6]   Exploring the impact of super-resolution deep learning on MR angiography image quality [J].
Hokamura, Masamichi ;
Uetani, Hiroyuki ;
Nakaura, Takeshi ;
Matsuo, Kensei ;
Morita, Kosuke ;
Nagayama, Yasunori ;
Kidoh, Masafumi ;
Yamashita, Yuichi ;
Ueda, Mitsuharu ;
Mukasa, Akitake ;
Hirai, Toshinori .
NEURORADIOLOGY, 2024, 66 (02) :217-226
[7]   Significance of degree of neurovascular compression in surgery for trigeminal neuralgia [J].
Hughes, Marion A. ;
Jani, Ronak H. ;
Fakhran, Saeed ;
Chang, Yue-Fang ;
Branstetter, Barton F. ;
Thirumala, Parthasarathy D. ;
Sekula, Raymond F., Jr. .
JOURNAL OF NEUROSURGERY, 2020, 133 (02) :411-416
[8]   Clinical Impact of Deep Learning Reconstruction in MRI [J].
Kiryu, Shigeru ;
Akai, Hiroyuki ;
Yasaka, Koichiro ;
Tajima, Taku ;
Kunimatsu, Akira ;
Yoshioka, Naoki ;
Akahane, Masaaki ;
Abe, Osamu ;
Ohtomo, Kuni .
RADIOGRAPHICS, 2023, 43 (06)
[9]   Feasibility study of super-resolution deep learning-based reconstruction using k-space data in brain diffusion-weighted images [J].
Matsuo, Kensei ;
Nakaura, Takeshi ;
Morita, Kosuke ;
Uetani, Hiroyuki ;
Nagayama, Yasunori ;
Kidoh, Masafumi ;
Hokamura, Masamichi ;
Yamashita, Yuichi ;
Shinoda, Kensuke ;
Ueda, Mitsuharu ;
Mukasa, Akitake ;
Hirai, Toshinori .
NEURORADIOLOGY, 2023, 65 (11) :1619-1629
[10]   Appearance of Normal Cranial Nerves on Steady-State Free Precession MR Images [J].
Sheth, Sujay ;
Branstetter, Barton F. ;
Escott, Edward J. .
RADIOGRAPHICS, 2009, 29 (04) :1045-1056