A coupled immersed boundary method and isogeometric shell analysis for fluid-structure interaction of flexible and lightweight shells in high-Reynolds number flows

被引:0
作者
Yan, Keye [1 ,2 ,3 ,4 ]
Wu, Yue [1 ,2 ,3 ]
Zhu, Qiming [1 ,2 ,3 ]
Khoo, Cheong [4 ]
机构
[1] Harbin Inst Technol, Minist Educ, Key Lab Struct Dynam Behav & Control, Harbin 150090, Peoples R China
[2] Harbin Inst Technol, Minist Ind & Informat Technol, Key Lab Smart Prevent & Mitigat Civil Engn Disaste, Harbin 150090, Peoples R China
[3] Harbin Inst Technol, Sch Civil Engn, Harbin 150090, Peoples R China
[4] Natl Univ Singapore, Dept Mech Engn, Singapore 117575, Singapore
基金
中国国家自然科学基金;
关键词
Fluid-structure interaction; Immersed boundary method; High-Reynolds number flows; Isogeometric analysis; Wall modeling; LARGE-EDDY SIMULATION; NUMERICAL DISSIPATION; INCOMPRESSIBLE FLOWS; LARGE DEFORMATIONS; HEART-VALVES; MEMBRANE; MASS; ALGORITHMS; FRAMEWORK; DYNAMICS;
D O I
10.1016/j.cma.2025.117898
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study presents an efficient numerical framework for simulating fluid-structure interactions (FSIs) involving flexible, lightweight shells subjected to high-Reynolds-number flows. By combining the immersed boundary method (IBM) and isogeometric analysis (IGA), the framework incorporates three major innovations: (1) a wall-modeling, direct-forcing, diffused-interface IBM tailored for FSI simulations with high-Reynolds-number turbulent flows, employing non- equilibrium explicit wall functions; (2) integration of the interface quasi-Newton inverse least-squares (IQN-ILS) method into the IBM/IGA framework to enhance the accuracy and efficiency of iterative Gauss-Seidel coupling in strongly coupled FSI scenarios; and (3) high-order solvers for both fluid and structural domains, featuring a sixth-order compact finite difference method (FDM) for fluid dynamics and isogeometric shell formulations for structural analysis. The framework is validated through four numerical test cases, including simulations of a hinged flag, an inverted flag, a membrane airfoil, and an air-supported membrane structure. The results demonstrate good agreement with reference data, showing the framework's efficiency, accuracy, and applicability for solving large-scale shell-related FSI problems across diverse engineering and scientific domains.
引用
收藏
页数:27
相关论文
共 132 条
  • [1] An efficient isogeometric/finite-difference immersed boundary method for the fluid-structure interactions of slender flexible structures
    Agrawal, Vishal
    Kulachenko, Artem
    Scapin, Nicola
    Tammisola, Outi
    Brandt, Luca
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 418
  • [2] Systematic evaluation of the interface description for fluid-structure interaction simulations using the isogeometric mortar-based mapping
    Apostolatos, Andreas
    De Nayer, Guillaume
    Bletzinger, Kai-Uwe
    Breuer, Michael
    Wuechner, Roland
    [J]. JOURNAL OF FLUIDS AND STRUCTURES, 2019, 86 : 368 - 399
  • [3] Two-layer approximate boundary conditions for large-eddy simulations
    Balaras, E
    Benocci, C
    Piomelli, U
    [J]. AIAA JOURNAL, 1996, 34 (06) : 1111 - 1119
  • [4] Xcompact3D: An open-source framework for solving turbulence problems on a Cartesian mesh
    Bartholomew, Paul
    Deskos, Georgios
    Frantz, Ricardo A. S.
    Schuch, Felipe N.
    Lamballais, Eric
    Laizet, Sylvain
    [J]. SOFTWAREX, 2020, 12
  • [5] Isogeometric fluid-structure interaction: theory, algorithms, and computations
    Bazilevs, Y.
    Calo, V. M.
    Hughes, T. J. R.
    Zhang, Y.
    [J]. COMPUTATIONAL MECHANICS, 2008, 43 (01) : 3 - 37
  • [6] Isogeometric analysis:: Approximation, stability and error estimates for h-refined meshes
    Bazilevs, Y.
    Da Veiga, L. Beirao
    Cottrell, J. A.
    Hughes, T. J. R.
    Sangalli, G.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (07) : 1031 - 1090
  • [7] Isogeometric fluid-structure interaction analysis with applications to arterial blood flow
    Bazilevs, Y.
    Calo, V. M.
    Zhang, Y.
    Hughes, T. J. R.
    [J]. COMPUTATIONAL MECHANICS, 2006, 38 (4-5) : 310 - 322
  • [8] Novel structural modeling and mesh moving techniques for advanced fluid-structure interaction simulation of wind turbines
    Bazilevs, Y.
    Korobenko, A.
    Deng, X.
    Yan, J.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2015, 102 (3-4) : 766 - 783
  • [9] Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines
    Bazilevs, Y.
    Hsu, M-C.
    Scott, M. A.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 249 : 28 - 41
  • [10] 3D simulation of wind turbine rotors at full scale. Part II: Fluid-structure interaction modeling with composite blades
    Bazilevs, Y.
    Hsu, M. -C.
    Kiendl, J.
    Wuechner, R.
    Bletzinger, K. -U.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 65 (1-3) : 236 - 253