The Influence of Process Parameters on the Density, Microstructure, and Mechanical Properties of TA15 Titanium Alloy Fabricated by Selective Laser Melting

被引:0
|
作者
Jiang, Junjie [1 ]
Liang, Chuang [1 ]
Chen, Yuanchao [2 ]
Wang, Yongbiao [1 ]
Cui, Hongyang [1 ]
Xu, Jianlin [1 ]
Zhou, Fang [1 ]
Wang, Pengpeng [1 ]
Zhang, David Z. [3 ]
机构
[1] Zhengzhou Univ Light Ind, Henan Prov Key Lab Intelligent Mfg Mech Equipment, Zhengzhou 450002, Peoples R China
[2] Zhengzhou RuiFei Biotechnol Co Ltd, Zhengzhou 450001, Peoples R China
[3] Univ Exeter, Coll Engn Math & Phys Sci, North Pk Rd, Exeter EX4 4QF, Devon, England
关键词
selective laser melting; TA15; linear energy density; single-track; microstructure; mechanical properties; HEAT-TREATMENT; TI-6AL-4V; EVOLUTION; MODE; COMPONENTS; FLOW;
D O I
10.3390/met15030233
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
With superior manufacturing freedom capability, Selective Laser Melting (SLM) technology is capable of fabricating high-strength Ti-6Al-2Zr-1Mo-1V (TA15) complex titanium alloy parts, thereby finding extensive applications in the aerospace sector. This paper primarily investigates the influence of process parameters on the relative density, microstructure, and mechanical properties of SLMed TA15 under conditions of similar laser linear energy density. The results indicate that the laser linear energy density significantly affects the single-track morphology of SLMed TA15; excessive energy density leads to keyhole defects, while insufficient energy density causes balling phenomena, resulting in discontinuous clad tracks. When the laser linear energy density is appropriate, the scanning spacing affects the forming density of the parts, with both excessively large and small spacings having adverse effects. With a fixed scanning spacing of 100 mu m, high-density samples can be produced within a suitable range of linear energy density. However, when the laser linear energy density is comparable, a lower scanning speed leads to heat accumulation, causing in situ decomposition of the alpha' martensite and the formation of coarser alpha + beta phases, which reduces strength and hardness but improves plasticity. At a laser power of 90 W, a scanning speed of 400 mm/s, and a scanning spacing of 100 mu m, the specimen exhibits a tensile strength of 1233 MPa and an elongation of 8.4%, achieving relatively excellent comprehensive properties.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Microstructure and mechanical properties of pure titanium models fabricated by selective laser melting
    Santos, EC
    Osakada, K
    Shiomi, M
    Kitamura, Y
    Abe, F
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2004, 218 (07) : 711 - 719
  • [32] Effect of Process Parameters on the Mechanical Properties of Hastelloy X Alloy Fabricated by Selective Laser Melting
    Ni, Xiaoqing
    Kong, Decheng
    Zhang, Liang
    Dong, Chaofang
    Song, Jia
    Wu, Wenheng
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2019, 28 (09) : 5533 - 5540
  • [33] Effect of Process Parameters on the Mechanical Properties of Hastelloy X Alloy Fabricated by Selective Laser Melting
    Xiaoqing Ni
    Decheng Kong
    Liang Zhang
    Chaofang Dong
    Jia Song
    Wenheng Wu
    Journal of Materials Engineering and Performance, 2019, 28 : 5533 - 5540
  • [34] Influence of process parameters and aging treatment on the microstructure and mechanical properties of AlSi8Mg3 alloy fabricated by selective laser melting
    Yaoxiang Geng
    Hao Tang
    Junhua Xu
    Yu Hou
    Yuxin Wang
    Zhen He
    Zhijie Zhang
    Hongbo Ju
    Lihua Yu
    International Journal of Minerals, Metallurgy and Materials, 2022, 29 : 1770 - 1779
  • [35] Microstructures and mechanical properties of laser deposition of TA15 titanium alloy with ultrasonic treatment
    Key Laboratory of Fundamental Science for National Defence of Aeronautical Digital Manufacturing Process, Shenyang Aerospace University, Shenyang
    110136, China
    Hongwai yu Jiguang Gongcheng Infrared Laser Eng., 12 (3559-3564):
  • [36] Influence of process parameters and aging treatment on the microstructure and mechanical properties of AlSi8Mg3 alloy fabricated by selective laser melting
    Geng, Yaoxiang
    Tang, Hao
    Xu, Junhua
    Hou, Yu
    Wang, Yuxin
    He, Zhen
    Zhang, Zhijie
    Ju, Hongbo
    Yu, Lihua
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2022, 29 (09) : 1770 - 1779
  • [37] Research on the microstructure and properties of weld repairs in TA15 titanium alloy
    Liu Liming
    Du Xin
    Zhu Meili
    Chen Guoqing
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2007, 445 : 691 - 696
  • [38] Effects of ultrasonic shot peening on fatigue behavior of TA15 titanium alloy fabricated by laser melting deposition
    Wu, Bin
    Huang, Jianxin
    Yang, Guang
    Ren, Yuhang
    Zhou, Siyu
    An, Da
    SURFACE & COATINGS TECHNOLOGY, 2022, 446
  • [39] Microstructure and mechanical evolution behavior of LPBF (laser powder bed fusion)-fabricated TA15 alloy
    Wu, Xuping
    Zhang, Dongyun
    Guo, Yanwu
    Zhang, Tai
    Liu, Zhiyuan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 873
  • [40] Microstructure and Fatigue Properties of Laser Deposition Repaired TA15 Titanium Alloy Manufactured by Laser Deposition
    Wang W.
    Li X.
    Zhao S.
    Fan R.
    Yang G.
    Xiyou Jinshu/Chinese Journal of Rare Metals, 2019, 43 (10): : 1047 - 1053