Spontaneous symmetry breaking in a SO(3) non-Abelian lattice gauge theory in 2+ 1D with quantum algorithms

被引:0
作者
Maiti, Sandip [1 ,2 ]
Banerjee, Debasish [1 ,2 ,3 ]
Chakraborty, Bipasha [3 ]
Huffman, Emilie [4 ]
机构
[1] Saha Inst Nucl Phys, HBNI, 1-AF Bidhannagar, Kolkata 700064, India
[2] Homi Bhabha Natl Inst, Training Sch Complex, Mumbai 400094, India
[3] Univ Southampton, Sch Phys & Astron, Univ Rd, Southampton, England
[4] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
来源
PHYSICAL REVIEW RESEARCH | 2025年 / 7卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
EIGENSOLVER; PHYSICS; MODEL; STATE;
D O I
10.1103/PhysRevResearch.7.013283
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The simulation of various properties of quantum field theories is rapidly becoming a testing ground for demonstrating the prowess of quantum algorithms. Some examples include the preparation of ground states, as well as the investigation of various simple wave packets relevant for scattering phenomena. In this paper, we study the ability of quantum algorithms to prepare ground states in a matter-free non-Abelian SO(3) lattice gauge theory in 2 + 1D in a phase where the global charge conjugation symmetry is spontaneously broken. This is challenging for two reasons: the necessity of dealing with a large Hilbert space for gauge theories compared to that of quantum spin models, and the closing of the gap between the two ground states, which becomes exponentially small as a function of the volume. To deal with the large Hilbert space of gauge fields, we demonstrate how the exact imposition of the non-Abelian Gauss law in the rishon representation of the quantum link operator significantly reduces the degrees of freedom. Further, to resolve the gap, we introduce symmetry-guided ans & auml;tze in the Gauss-law-resolved basis for trial states as the starting point for the quantum algorithms to prepare the two lowest-energy states. In addition to simulation results for a range of two-dimensional system sizes, we also provide experimental results from the trapped-ion-based quantum hardware, IonQ, when working on systems with four quantum links. The experimental/simulation results derived from our theoretical developments indicate the role of metrics-such as the energy and the infidelity-to assess the obtained results.
引用
收藏
页数:20
相关论文
共 73 条
[1]   Fuzzy gauge theory for quantum computers [J].
Alexandru, Andrei ;
Bedaque, Paulo F. ;
Carosso, Andrea ;
Cervia, Michael J. ;
Murairi, Edison M. ;
Sheng, Andy .
PHYSICAL REVIEW D, 2024, 109 (09)
[2]   Gluon field digitization for quantum computers [J].
Alexandru, Andrei ;
Bedaque, Paulo F. ;
Harmalkar, Siddhartha ;
Lamm, Henry ;
Lawrence, Scott ;
Warrington, Neill C. .
PHYSICAL REVIEW D, 2019, 100 (11)
[3]   Quantum Simulators: Architectures and Opportunities [J].
Altman, Ehud ;
Brown, Kenneth R. ;
Carleo, Giuseppe ;
Carr, Lincoln D. ;
Demler, Eugene ;
Chin, Cheng ;
DeMarco, Brian ;
Economou, Sophia E. ;
Eriksson, Mark A. ;
Fu, Kai-Mei C. ;
Greiner, Markus ;
Hazzard, Kaden R. A. ;
Hulet, Randall G. ;
Kollar, Alicia J. ;
Lev, Benjamin L. ;
Lukin, Mikhail D. ;
Ma, Ruichao ;
Mi, Xiao ;
Misra, Shashank ;
Monroe, Christopher ;
Murch, Kater ;
Nazario, Zaira ;
Ni, Kang-Kuen ;
Potter, Andrew C. ;
Roushan, Pedram ;
Saffman, Mark ;
Schleier-Smith, Monika ;
Siddiqi, Irfan ;
Simmonds, Raymond ;
Singh, Meenakshi ;
Spielman, I. B. ;
Temme, Kristan ;
Weiss, David S. ;
Vuckovic, Jelena ;
Vuletic, Vladan ;
Ye, Jun ;
Zwierlein, Martin .
PRX QUANTUM, 2021, 2 (01)
[4]   Broken symmetry and fractionalized flux strings in a staggered U(1) pure gauge theory [J].
Banerjee, A. ;
Banerjee, D. ;
Kanwar, G. ;
Mariani, A. ;
Rindlisbacher, T. ;
Wiese, U. -J .
PHYSICAL REVIEW D, 2024, 109 (01)
[5]   The (2+1)-d U(1) quantum link model masquerading as deconfined criticality [J].
Banerjee, D. ;
Jiang, F. -J. ;
Widmer, P. ;
Wiese, U-J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
[6]   Atomic Quantum Simulation of U(N) and SU(N) Non-Abelian Lattice Gauge Theories [J].
Banerjee, D. ;
Boegli, M. ;
Dalmonte, M. ;
Rico, E. ;
Stebler, P. ;
Wiese, U. -J. ;
Zoller, P. .
PHYSICAL REVIEW LETTERS, 2013, 110 (12)
[7]   Exploring bosonic and fermionic link models on (3 [J].
Banerjee, Debasish ;
Huffman, Emilie ;
Rammelmueller, Lukas .
PHYSICAL REVIEW RESEARCH, 2022, 4 (03)
[8]   Tensor Network Algorithms: A Route Map [J].
Banuls, Mari Carmen .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, 2023, 14 :173-191
[9]   Quantum Simulation for High-Energy Physics [J].
Bauer, Christian W. ;
Davoudi, Zohreh ;
Balantekin, A. Baha ;
Bhattacharya, Tanmoy ;
Carena, Marcela ;
de Jong, Wibe A. ;
Draper, Patrick ;
El-Khadra, Aida ;
Gemelke, Nate ;
Hanada, Masanori ;
Kharzeev, Dmitri ;
Lamm, Henry ;
Li, Ying-Yin ;
Liu, Junyu ;
Lukin, Mikhail ;
Meurice, Yannick ;
Monroe, Christopher ;
Nachman, Benjamin ;
Pagano, Guido ;
Preskill, John ;
Rinaldi, Enrico ;
Roggero, Alessandro ;
Santiago, David I. ;
Savage, Martin J. ;
Siddiqi, Irfan ;
Siopsis, George ;
Van Zanten, David ;
Wiebe, Nathan ;
Yamauchi, Yukari ;
Yeter-Aydeniz, Kuebra ;
Zorzetti, Silvia .
PRX QUANTUM, 2023, 4 (02)
[10]   THE COMPUTER AS A PHYSICAL SYSTEM - A MICROSCOPIC QUANTUM-MECHANICAL HAMILTONIAN MODEL OF COMPUTERS AS REPRESENTED BY TURING-MACHINES [J].
BENIOFF, P .
JOURNAL OF STATISTICAL PHYSICS, 1980, 22 (05) :563-591