A global attention based gated temporal convolutional network for machine remaining useful life prediction
被引:0
作者:
Xu, Xinyao
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ Def Technol, Res Inst 63, Nanjing 210007, Peoples R China
Natl Univ Def Technol, Lab Big Data & Decis, Changsha 410073, Hunan, Peoples R ChinaNatl Univ Def Technol, Res Inst 63, Nanjing 210007, Peoples R China
Xu, Xinyao
[1
,2
]
Zhou, Xiaolei
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ Def Technol, Res Inst 63, Nanjing 210007, Peoples R China
Natl Univ Def Technol, Lab Big Data & Decis, Changsha 410073, Hunan, Peoples R ChinaNatl Univ Def Technol, Res Inst 63, Nanjing 210007, Peoples R China
Zhou, Xiaolei
[1
,2
]
Fan, Qiang
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ Def Technol, Res Inst 63, Nanjing 210007, Peoples R China
Natl Univ Def Technol, Lab Big Data & Decis, Changsha 410073, Hunan, Peoples R ChinaNatl Univ Def Technol, Res Inst 63, Nanjing 210007, Peoples R China
Fan, Qiang
[1
,2
]
Yan, Hao
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ Def Technol, Res Inst 63, Nanjing 210007, Peoples R China
Natl Univ Def Technol, Lab Big Data & Decis, Changsha 410073, Hunan, Peoples R ChinaNatl Univ Def Technol, Res Inst 63, Nanjing 210007, Peoples R China
Yan, Hao
[1
,2
]
Wang, Fangxiao
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ Def Technol, Res Inst 63, Nanjing 210007, Peoples R China
Natl Univ Def Technol, Lab Big Data & Decis, Changsha 410073, Hunan, Peoples R ChinaNatl Univ Def Technol, Res Inst 63, Nanjing 210007, Peoples R China
Wang, Fangxiao
[1
,2
]
机构:
[1] Natl Univ Def Technol, Res Inst 63, Nanjing 210007, Peoples R China
[2] Natl Univ Def Technol, Lab Big Data & Decis, Changsha 410073, Hunan, Peoples R China
As the core technique of the prognostic and health management field, data-driven remaining useful life (RUL) prediction generally requires abundant data to construct reliable mappings from monitoring data to machines' RUL labels. However, the diverse working conditions of machines can lead to their different degradation trajectories, which makes similar data indicate diverse RULs of different machines. When predicting RULs with monitoring data, the phenomenon causes a severe label confusion problem and limits the performance of datadriven RUL prediction methods. In this paper, a new gated-temporal-convolutional-network-based method is proposed for RUL prediction tasks of machines. To handle the label confusion problem, a novel global attention mechanism is proposed, which enables the proposed model to identify confused data by the difference in machines' global degradation tendencies. Besides, a new temporal convolutional network with a gating mechanism is proposed for better feature extraction performance. Moreover, a new nearest-neighbor-based data compensation strategy is designed to simplify data distributions. Both strategies also contribute to the solution of the problem. The proposed method is verified on an aircraft turbofan engine dataset and a bearing dataset. The experiment results show the effectiveness of the proposed method.
引用
收藏
页数:15
相关论文
共 45 条
[1]
Bai SJ, 2018, Arxiv, DOI [arXiv:1803.01271, DOI 10.48550/ARXIV.1803.01271, 10.48550/arXiv.1803.01271]
机构:
South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R ChinaSouth China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China
Jiang, Fei
;
Ding, Kang
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R ChinaSouth China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China
Ding, Kang
;
He, Guolin
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China
Pazhou Lab, Guangzhou 510335, Peoples R ChinaSouth China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China
He, Guolin
;
Lin, Huibin
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R ChinaSouth China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China
Lin, Huibin
;
Chen, Zhuyun
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China
Pazhou Lab, Guangzhou 510335, Peoples R ChinaSouth China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China
Chen, Zhuyun
;
Li, Weihua
论文数: 0引用数: 0
h-index: 0
机构:
Pazhou Lab, Guangzhou 510335, Peoples R China
South China Univ Technol, Shien Ming Wu Sch Intelligent Engn, Guangzhou 510640, Peoples R ChinaSouth China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China
机构:
South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R ChinaSouth China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China
Jiang, Fei
;
Ding, Kang
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R ChinaSouth China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China
Ding, Kang
;
He, Guolin
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China
Pazhou Lab, Guangzhou 510335, Peoples R ChinaSouth China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China
He, Guolin
;
Lin, Huibin
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R ChinaSouth China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China
Lin, Huibin
;
Chen, Zhuyun
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China
Pazhou Lab, Guangzhou 510335, Peoples R ChinaSouth China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China
Chen, Zhuyun
;
Li, Weihua
论文数: 0引用数: 0
h-index: 0
机构:
Pazhou Lab, Guangzhou 510335, Peoples R China
South China Univ Technol, Shien Ming Wu Sch Intelligent Engn, Guangzhou 510640, Peoples R ChinaSouth China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China