AI-Driven insights in pancreatic cancer imaging: from pre-diagnostic detection to prognostication

被引:4
作者
Antony, Ajith [1 ]
Mukherjee, Sovanlal [1 ]
Bi, Yan [2 ]
Collisson, Eric A. [3 ]
Nagaraj, Madhu [1 ]
Murlidhar, Murlidhar [1 ]
Wallace, Michael B. [2 ]
Goenka, Ajit H. [1 ]
机构
[1] Mayo Clin, Dept Radiol, Rochester, MN 55905 USA
[2] Mayo Clin, Dept Gastroenterol & Hepatol, Jacksonville, FL 32224 USA
[3] Fred Hutchinson Canc Ctr Seattle, Dept Med Oncol, Seattle, WA USA
关键词
Pancreas; Artificial intelligence; Biomarkers; Detection; Pancreatic ductal adenocarcinoma; Segmentation; Prognostication; Computed tomography; DUCTAL ADENOCARCINOMA; SURVIVAL;
D O I
10.1007/s00261-024-04775-x
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related deaths in the United States, largely due to its poor five-year survival rate and frequent late-stage diagnosis. A significant barrier to early detection even in high-risk cohorts is that the pancreas often appears morphologically normal during the pre-diagnostic phase. Yet, the disease can progress rapidly from subclinical stages to widespread metastasis, undermining the effectiveness of screening. Recently, artificial intelligence (AI) applied to cross-sectional imaging has shown significant potential in identifying subtle, early-stage changes in pancreatic tissue that are often imperceptible to the human eye. Moreover, AI-driven imaging also aids in the discovery of prognostic and predictive biomarkers, essential for personalized treatment planning. This article uniquely integrates a critical discussion on AI's role in detecting visually occult PDAC on pre-diagnostic imaging, addresses challenges of model generalizability, and emphasizes solutions like standardized datasets and clinical workflows. By focusing on both technical advancements and practical implementation, this article provides a forward-thinking conceptual framework that bridges current gaps in AI-driven PDAC research.
引用
收藏
页码:3214 / 3224
页数:11
相关论文
共 67 条
[1]   FDG-PET Predicts Neoadjuvant Therapy Response and Survival in Borderline Resectable/Locally Advanced Pancreatic Adenocarcinoma [J].
Abdelrahman, Amro M. ;
Goenka, Ajit H. ;
Alva-Ruiz, Roberto ;
Yonkus, Jennifer A. ;
Leiting, Jennifer L. ;
Graham, Rondell P. ;
Merrell, Kenneth W. ;
Thiels, Cornelius A. ;
Hallemeier, Christopher L. ;
Warner, Susanne G. ;
Haddock, Michael G. ;
Grotz, Travis E. ;
Tran, Nguyen H. ;
Smoot, Rory L. ;
Ma, Wen Wee ;
Cleary, Sean P. ;
McWilliams, Robert R. ;
Nagorney, David M. ;
Halfdanarson, Thorvardur R. ;
Kendrick, Michael L. ;
Truty, Mark J. .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2022, 20 (09) :1023-+
[2]   Radiomic Features at CT Can Distinguish Pancreatic Cancer from Noncancerous Pancreas (vol 3, e210010, 2021) [J].
Chen, Po-Ting ;
Chang, Dawei ;
Yen, Huihsuan ;
Liu, Kao-Lang ;
Huang, Su-Yun ;
Roth, Holger ;
Wu, Ming-Shiang ;
Liao, Wei-Chih ;
Wang, Weichung .
RADIOLOGY-IMAGING CANCER, 2021, 3 (04)
[3]  
[Anonymous], Cancer of the Pancreas - Cancer Stat Facts [Internet]
[4]   Survival Prediction in Pancreatic Ductal Adenocarcinoma by Quantitative Computed Tomography Image Analysis [J].
Attiyeh, Marc A. ;
Chakraborty, Jayasree ;
Doussot, Alexandre ;
Langdon-Embry, Liana ;
Mainarich, Shiana ;
Gonen, Mithat ;
Balachandran, Vinod P. ;
D'Angelica, Michael I. ;
DeMatteo, Ronald P. ;
Jarnagin, William R. ;
Kingham, T. Peter ;
Allen, Peter J. ;
Simpson, Amber L. ;
Do, Richard K. .
ANNALS OF SURGICAL ONCOLOGY, 2018, 25 (04) :1034-1042
[5]   Assessment of Response to Neoadjuvant Therapy Using CT Texture Analysis in Patients With Resectable and Borderline Resectable Pancreatic Ductal Adenocarcinoma [J].
Borhani, Amir A. ;
Dewan, Rohit ;
Furlan, Alessandro ;
Seiser, Natalie ;
Zureikat, Amer H. ;
Singhi, Aatur D. ;
Boone, Brian ;
Bahary, Nathan ;
Hogg, Melissa E. ;
Lotze, Michael ;
Zeh, Herbert J., III ;
Tublin, Mitchell E. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2020, 214 (02) :362-369
[6]   Large-scale pancreatic cancer detection via non-contrast CT and deep learning [J].
Cao, Kai ;
Xia, Yingda ;
Yao, Jiawen ;
Han, Xu ;
Lambert, Lukas ;
Zhang, Tingting ;
Tang, Wei ;
Jin, Gang ;
Jiang, Hui ;
Fang, Xu ;
Nogues, Isabella ;
Li, Xuezhou ;
Guo, Wenchao ;
Wang, Yu ;
Fang, Wei ;
Qiu, Mingyan ;
Hou, Yang ;
Kovarnik, Tomas ;
Vocka, Michal ;
Lu, Yimei ;
Chen, Yingli ;
Chen, Xin ;
Liu, Zaiyi ;
Zhou, Jian ;
Xie, Chuanmiao ;
Zhang, Rong ;
Lu, Hong ;
Hager, Gregory D. ;
Yuille, Alan L. ;
Lu, Le ;
Shao, Chengwei ;
Shi, Yu ;
Zhang, Qi ;
Liang, Tingbo ;
Zhang, Ling ;
Lu, Jianping .
NATURE MEDICINE, 2023, 29 (12) :3033-3043
[7]   AI applications to medical images: From machine learning to deep learning [J].
Castiglioni, Isabella ;
Rundo, Leonardo ;
Codari, Marina ;
Leo, Giovanni Di ;
Salvatore, Christian ;
Interlenghi, Matteo ;
Gallivanone, Francesca ;
Cozzi, Andrea ;
D'Amico, Natascha Claudia ;
Sardanelli, Francesco .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2021, 83 :9-24
[8]   Probability of pancreatic cancer following diabetes: A population-based study [J].
Chari, ST ;
Leibson, CL ;
Rabe, KG ;
Ransom, J ;
De Andrade, M ;
Petersen, GM .
GASTROENTEROLOGY, 2005, 129 (02) :504-511
[9]   Pancreatic Cancer Detection on CT Scans with Deep Learning: A Nationwide Population-based Study [J].
Chen, Po -Ting ;
Wu, Tinghui ;
Wang, Pochuan ;
Chang, Dawei ;
Liu, Kao-Lang ;
Wu, Ming-Shiang ;
Roth, Holger R. ;
Lee, Po-Chang ;
Liao, Wei-Chih ;
Wang, Weichung .
RADIOLOGY, 2023, 306 (01) :172-182
[10]  
Chen PT, 2021, RADIOL-IMAG CANCER, V3, DOI 10.1148/rycan.2021210010