Extremal Weight Crystals Over Affine Lie Algebras of Infinite Rank

被引:0
作者
Heo, Taehyeok [1 ]
机构
[1] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
关键词
Extremal weight crystals; Affine Lie algebra of infinite rank; Jacobi-Trudi formula; Grothendieck ring; LITTLEWOOD-RICHARDSON RULE; TYPES B; Q-ANALOG; BASES; DUALITY; REPRESENTATIONS; SUPERALGEBRAS; MODULES;
D O I
10.1007/s10468-024-10302-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We explain extremal weight crystals over affine Lie algebras of infinite rank using combinatorial models: a spinor model due to Kwon, and an infinite rank analogue of Kashiwara-Nakashima tableaux due to Lecouvey. In particular, we show that Lecouvey's tableau model is isomorphic to an extremal weight crystal of level zero. Using these combinatorial models, we explain an algebra structure of the Grothendieck ring for a category consisting of some extremal weight crystals.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 29 条