Swarm Multi-agent Trapping Multi-target Control with Obstacle Avoidance

被引:0
作者
Li, Chenyang [1 ]
Jiang, Guanjie [1 ]
Yang, Yonghui [1 ]
Chen, XueBo [1 ]
机构
[1] Univ Sci & Technol Liaoning, Sch Elect & Informat Engn, Anshan 114051, Peoples R China
来源
ADVANCES IN SWARM INTELLIGENCE, ICSI 2023, PT II | 2023年 / 13969卷
关键词
Swarm; multi-agent; trapping; multi-target; avoid obstacles; FLOCKING; COORDINATION; ALGORITHMS; SYSTEMS;
D O I
10.1007/978-3-031-36625-3_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we investigate that swarm multi-agent can trap multi-target and avoid obstacles simultaneously through cooperative control. First, the control method proposed in this paper allows the number of multi-agent to trap each target evenly, without all or more than half of the number of agents trapping one of the targets. Second, a uniform number of agents track the target based on information about the target and local interactions with other agents. Introducing a repulsive potential function between the agent and the target can enclose the target. In addition, the control method designed in this paper can trap the target faster. Finally, agents trapping the same target converge their velocity to achieve the capture of the target after forming an enclosing state. In achieving this process, agents can simultaneously avoid obstacles well. The simulation results show the feasibility.
引用
收藏
页码:49 / 61
页数:13
相关论文
共 24 条
  • [1] Swarm Formation Control Utilizing Elliptical Surfaces and Limiting Functions
    Barnes, Laura E.
    Fields, Mary Anne
    Valavanis, Kimon P.
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2009, 39 (06): : 1434 - 1445
  • [2] Blum Christian, 2008, P43, DOI 10.1007/978-3-540-74089-6_2
  • [3] Response threshold models and stochastic learning automata for self-coordination of heterogeneous multi-task distribution in multi-robot systems
    de Lope, Javier
    Maravall, Dario
    Quinonez, Yadira
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2013, 61 (07) : 714 - 720
  • [4] Intermittent collective motion in sheep results from alternating the role of leader and follower
    Gomez-Nava, Luis
    Bon, Richard
    Peruani, Fernando
    [J]. NATURE PHYSICS, 2022, 18 (12) : 1494 - 1501
  • [5] Coordination of groups of mobile autonomous agents using nearest neighbor rules
    Jadbabaie, A
    Lin, J
    Morse, AS
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (06) : 988 - 1001
  • [6] Jiang ZW, 2019, PROC IEEE INT SYMP, P1775, DOI 10.1109/ISIE.2019.8781521
  • [7] Karaman S., 2011, Sampling-Based Algorithms for Optimal Motion Planning
  • [8] Fast replanning for navigation in unknown terrain
    Koenig, S
    Likhachev, M
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2005, 21 (03) : 354 - 363
  • [9] Flocking algorithm with multi-target tracking for multi-agent systems
    Luo, Xiaoyuan
    Li, Shaobao
    Guan, Xinping
    [J]. PATTERN RECOGNITION LETTERS, 2010, 31 (09) : 800 - 805
  • [10] Human-level control through deep reinforcement learning
    Mnih, Volodymyr
    Kavukcuoglu, Koray
    Silver, David
    Rusu, Andrei A.
    Veness, Joel
    Bellemare, Marc G.
    Graves, Alex
    Riedmiller, Martin
    Fidjeland, Andreas K.
    Ostrovski, Georg
    Petersen, Stig
    Beattie, Charles
    Sadik, Amir
    Antonoglou, Ioannis
    King, Helen
    Kumaran, Dharshan
    Wierstra, Daan
    Legg, Shane
    Hassabis, Demis
    [J]. NATURE, 2015, 518 (7540) : 529 - 533