A flexible humidity-resistant nanofiber-based triboelectric nanogenerator with high electrical output stability as self-powered sensors for motion monitoring

被引:0
|
作者
Sun, Yue [1 ]
Qian, Zicheng [1 ]
Wang, Yuna [1 ]
Li, Yaping [2 ]
Zheng, Yide [1 ]
Liu, Yong [3 ,4 ]
机构
[1] Yancheng Inst Technol, Coll Text & Clothing, Yancheng 224051, Jiangsu, Peoples R China
[2] Henan Univ Engn, Sch Text Engn, Zhengzhou 453003, Peoples R China
[3] Tiangong Univ, Key Lab Adv Text Composites, Minist Educ China, Tianjin 300387, Peoples R China
[4] Tiangong Univ, Sch Text Sci & Engn, Tianjin 300387, Peoples R China
关键词
Triboelectric nanogenerator; Nanofiber membrane; Energy harvesting; Self-power sensor; HOLLOW-FIBER MEMBRANE; ENERGY-CONVERSION;
D O I
10.1016/j.cej.2025.159845
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Triboelectric nanogenerators (TENGs) have been widely used to harvest irregular mechanical energy generated by human activities to power low-power wearable electronic devices due to their excellent electrical output performance, simple structure, high portability, and low cost. However, ambient humidity can significantly affect the surface charges of triboelectric materials and the electrical output stability of TENGs, which greatly limits their application. Herein, we designed a flexible humidity-resistant TENG with excellent electrical output stability based on zinc oxide nanorods@polyacrylonitrile (ZnO@PAN) nanofiber membrane modified with 1H,1H,2H,2H-Perfluorooctyltriethoxysilane (POTS). ZnO nanorods and POTS modification enhanced surface friction and the electrical output performance of the TENG in high humidity environments. The power density of as-prepared TENG reached 270.6 mu W/cm2 at the load resistance of 3.5 M Omega. Moreover, compared with the ZnO@PAN-based TENG, this humidity-resistant TENG showed lower electrical loss and shorter recovery time in the humidified state. It also exhibited excellent electrical output stability under the influence of continuous humidification. The pulse electrical signal generated by this humidity-resistant TENG could intermittently light up 54 LEDs at a relative humidity of 80 %. Furthermore, the POTS/ZnO@PAN-PDMS TENG was used as a selfpowered sensor for motion monitoring and haptic sensing in an environment with a relative humidity of 70 %, which exhibits good electromechanical conversion performance and motion monitoring capability in high humidity environments, greatly broadening the application range of TENGs.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Research on Self-Powered Rainfall Sensor Suitable for Landslide Monitoring Based on Triboelectric Nanogenerator
    Wu, Chuan
    Zou, Hao
    IEEE SENSORS JOURNAL, 2024, 24 (03) : 2620 - 2627
  • [42] A high performance triboelectric nanogenerator using assembled sugar naphthalimides for self-powered electronics and sensors
    Rachamalla, Arun Kumar
    Navaneeth, Madathil
    Banoo, Tohira
    Deepshikha
    Rebaka, Vara Prasad
    Kumar, Yogendra
    Rajaboina, Rakesh Kumar
    Nagarajan, Subbiah
    CHEMICAL ENGINEERING JOURNAL, 2024, 490
  • [43] Sodium-Alginate Composite Nanofiber-Based Triboelectric Sensor for Self-Powered Wrist Posture Identification
    Hong, Keke
    Hao, Yijun
    Yang, Jiayi
    Yang, Jin
    Su, Jiayu
    Su, Wei
    Zhang, Hongke
    Qin, Yong
    Zhang, Chuguo
    Li, Xiuhan
    ACS APPLIED ELECTRONIC MATERIALS, 2024, 6 (12) : 9071 - 9081
  • [44] Flexible cellulose/collagen/graphene oxide based triboelectric nanogenerator for self-powered cathodic protection
    Cai, Tongbo
    Liu, Xiukun
    Ju, Junping
    Lin, Hua
    Ruan, Hong
    Xu, Xu
    Lu, Shaorong
    Li, Yuqi
    MATERIALS LETTERS, 2022, 306
  • [45] Harvesting Energy of Body Motion Through Single Electrode Based Self-Powered Triboelectric Nanogenerator
    Shamsuddin
    Khan, Saeed Ahmed
    Ali, Ahmed
    Rahimoon, Abdul Qadir
    Jalalzai, Palwasha
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2019, 14 (11) : 1572 - 1581
  • [46] In2O3 nanocubes and ZnWO4 nanorod-based triboelectric nanogenerator for self-powered humidity sensors
    Singh, Ajeet
    Singh, Shakti
    Yadav, Bal Chandra
    SENSORS AND ACTUATORS B-CHEMICAL, 2024, 398
  • [47] On hydrodynamic and electrical characteristics of a self-powered triboelectric nanogenerator based buoy under water ripples
    Zhao, Yunpeng
    Fan, Zhongqi
    Bi, Chunwei
    Wang, Hao
    Mi, Jianchun
    Xu, Minyi
    APPLIED ENERGY, 2022, 308
  • [48] Bimetallic strip based triboelectric nanogenerator for self-powered high temperature alarm system
    Lai, Jianxin
    Ke, Yan
    Cao, Zhikang
    Xu, Wenxia
    Pan, Jing
    Dong, Yifan
    Zhou, Qitao
    Meng, Guowen
    Pan, Caofeng
    Xia, Fan
    NANO TODAY, 2022, 43
  • [49] Tube-based triboelectric nanogenerator for self-powered detecting blockage and monitoring air pressure
    Cui, Xiaojing
    Zhang, Hulin
    Cao, Shengli
    Yuan, Zhongyun
    Ding, Jie
    Sang, Shengbo
    NANO ENERGY, 2018, 52 : 71 - 77
  • [50] Ultra-flexible and high-sensitive triboelectric nanogenerator as electronic skin for self-powered human physiological signal monitoring
    Yu, Junbin
    Hou, Xiaojuan
    He, Jian
    Cui, Min
    Wang, Chao
    Geng, Wenping
    Mu, Jiliang
    Han, Bing
    Chou, Xiujian
    NANO ENERGY, 2020, 69 (69)