A flexible humidity-resistant nanofiber-based triboelectric nanogenerator with high electrical output stability as self-powered sensors for motion monitoring

被引:0
|
作者
Sun, Yue [1 ]
Qian, Zicheng [1 ]
Wang, Yuna [1 ]
Li, Yaping [2 ]
Zheng, Yide [1 ]
Liu, Yong [3 ,4 ]
机构
[1] Yancheng Inst Technol, Coll Text & Clothing, Yancheng 224051, Jiangsu, Peoples R China
[2] Henan Univ Engn, Sch Text Engn, Zhengzhou 453003, Peoples R China
[3] Tiangong Univ, Key Lab Adv Text Composites, Minist Educ China, Tianjin 300387, Peoples R China
[4] Tiangong Univ, Sch Text Sci & Engn, Tianjin 300387, Peoples R China
关键词
Triboelectric nanogenerator; Nanofiber membrane; Energy harvesting; Self-power sensor; HOLLOW-FIBER MEMBRANE; ENERGY-CONVERSION;
D O I
10.1016/j.cej.2025.159845
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Triboelectric nanogenerators (TENGs) have been widely used to harvest irregular mechanical energy generated by human activities to power low-power wearable electronic devices due to their excellent electrical output performance, simple structure, high portability, and low cost. However, ambient humidity can significantly affect the surface charges of triboelectric materials and the electrical output stability of TENGs, which greatly limits their application. Herein, we designed a flexible humidity-resistant TENG with excellent electrical output stability based on zinc oxide nanorods@polyacrylonitrile (ZnO@PAN) nanofiber membrane modified with 1H,1H,2H,2H-Perfluorooctyltriethoxysilane (POTS). ZnO nanorods and POTS modification enhanced surface friction and the electrical output performance of the TENG in high humidity environments. The power density of as-prepared TENG reached 270.6 mu W/cm2 at the load resistance of 3.5 M Omega. Moreover, compared with the ZnO@PAN-based TENG, this humidity-resistant TENG showed lower electrical loss and shorter recovery time in the humidified state. It also exhibited excellent electrical output stability under the influence of continuous humidification. The pulse electrical signal generated by this humidity-resistant TENG could intermittently light up 54 LEDs at a relative humidity of 80 %. Furthermore, the POTS/ZnO@PAN-PDMS TENG was used as a selfpowered sensor for motion monitoring and haptic sensing in an environment with a relative humidity of 70 %, which exhibits good electromechanical conversion performance and motion monitoring capability in high humidity environments, greatly broadening the application range of TENGs.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Fully self-powered instantaneous wireless humidity sensing system based on triboelectric nanogenerator
    Xu, Liangquan
    Xuan, Weipeng
    Chen, Jinkai
    Zhang, Chi
    Tang, Yuzhi
    Huang, Xiwei
    Li, Wenjun
    Jin, Hao
    Dong, Shurong
    Yin, Wuliang
    Fu, Yongqing
    Luo, Jikui
    NANO ENERGY, 2021, 83
  • [43] A self-powered multi-functional sensor based on triboelectric nanogenerator for monitoring states of rotating motion
    Lin, Senpeng
    Zhu, Lifeng
    Qiu, Ye
    Jiang, Zhengyang
    Wang, Yifei
    Zhu, Jun
    Wu, Huaping
    NANO ENERGY, 2021, 83
  • [44] Solvent-Resistant Wearable Triboelectric Nanogenerator for Energy-Harvesting and Self-Powered Sensors
    Yu, Yongtao
    Yu, Yuelin
    Wu, Hongyi
    Gao, Tianshuo
    Zhang, Yi
    Wu, Jiajia
    Yan, Jiawei
    Shi, Jian
    Morikawa, Hideaki
    Zhu, Chunhong
    ENERGY & ENVIRONMENTAL MATERIALS, 2024, 7 (05)
  • [45] A self-powered grip exerciser based on triboelectric nanogenerator for intelligent sports monitoring
    Zhang, Pengcheng
    Cai, Jun
    MATERIALS TECHNOLOGY, 2022, 37 (08) : 753 - 759
  • [46] Solvent-Resistant Wearable Triboelectric Nanogenerator for Energy-Harvesting and Self-Powered Sensors
    Yongtao Yu
    Yuelin Yu
    Hongyi Wu
    Tianshuo Gao
    Yi Zhang
    Jiajia Wu
    Jiawei Yan
    Jian Shi
    Hideaki Morikawa
    Chunhong Zhu
    Energy & Environmental Materials, 2024, 7 (05) : 380 - 390
  • [47] A smart triboelectric nanogenerator with tunable rheological and electrical performance for self-powered multi-sensors
    Wang, Sheng
    Yuan, Fang
    Liu, Shuai
    Zhou, Jianyu
    Xuan, Shouhu
    Wang, Yu
    Gong, Xinglong
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (11) : 3715 - 3723
  • [48] Flexible Fiber-based Triboelectric Generator for Self-powered Sensors
    Park, Jiwon
    Choi, A. Young
    Lee, Chang Jun
    Kim, Youn Tae
    2016 IEEE SENSORS, 2016,
  • [49] Triboelectric nanogenerator for high-entropy energy, self-powered sensors, and popular education
    Xiang, Huijing
    Peng, Lin
    Yang, Qiuxiang
    Wang, Zhong Lin
    Cao, Xia
    SCIENCE ADVANCES, 2024, 10 (48):
  • [50] Corrosion-resistant and high-performance crumpled-platinum-based triboelectric nanogenerator for self-powered motion sensing
    Lu, Wei
    Xu, Yun
    Zou, Yuxiao
    Zhang, Lin-ao
    Zhang, Jiushuang
    Wu, Weitong
    Song, Guofeng
    NANO ENERGY, 2020, 69