Robustness and limitations of maximum entropy in plant community assembly

被引:0
作者
Gerkema, Jelyn [1 ]
Bunker, Daniel E. [2 ]
Cunliffe, Andrew M. [3 ]
Bazzato, Erika [4 ]
Marignani, Michela [4 ]
Sitzia, Tommaso [5 ,6 ]
Aubin, Isabelle [7 ]
Chelli, Stefano [8 ]
Rosell, Julieta A. [9 ]
Poschlod, Peter [10 ]
Penuelas, Josep [11 ,12 ]
Dias, Arildo S. [13 ]
Rossi, Christian [14 ]
Shovon, Tanvir A. [15 ]
Campos, Juan A. [16 ]
Vanderwel, Mark C. [17 ]
Mukul, Sharif A. [18 ,19 ]
Cerabolini, Bruno E. L. [20 ]
Sibret, Thomas [21 ]
Herault, Bruno [22 ,23 ]
Schmitt, Sylvain [22 ,23 ]
Higuchi, Pedro [24 ]
Tsakalos, James L. [25 ]
Junaedi, Decky I. [26 ]
Zhao, Yun-Peng [27 ]
Minden, Vanessa [28 ]
Silva, Ana Carolina da [24 ]
Maskova, Tereza [29 ,30 ]
Canullo, Roberto [8 ]
Dong, Ning [31 ]
Pos, Edwin T. [1 ,32 ]
机构
[1] Univ Utrecht, Quantitat Biodivers Dynam Ecol & Biodivers, Padualaan 8, NL-3584 CH Utrecht, Netherlands
[2] New Jersey Inst Technol, Dept Biol Sci, Newark, NJ USA
[3] Univ Exeter, Dept Geog, Fac Environm Sci & Econ, Exeter, England
[4] Univ Cagliari, Dept Life & Environm Sci, Via St Ignazio da Laconi 13, I-09123 Cagliari, Italy
[5] Univ Padua, Dept Land Environm Agr & Forestry, Viale Univ 16, I-35020 Legnaro, PD, Italy
[6] Natl Biodivers Future Ctr, Palermo, Italy
[7] Nat Resources Canada, Canadian Forest Serv, Great Lakes Forestry Ctr, Sault Ste Marie, ON, Canada
[8] Univ Camerino, Sch Biosci & Vet Med, Camerino, Italy
[9] Univ Nacl Autonoma Mexico, Inst Ecol, Lab Nacl Ciencias Sostenibilidad, AP 70-275,Ciudad Univ, Mexico City 04510, DF, Mexico
[10] Univ Regensburg, Inst Plant Sci, Ecol & Conservat Biol, Regensburg, Germany
[11] CREAF CSIC UAB, CSIC, Global Ecol Unit, Bellaterra, Spain
[12] CREAF, Cerdanyola Del Valles, Spain
[13] Goethe Univ, Dept Phys Geog, Altenhoferallee 1, D-60438 Frankfurt, Germany
[14] Swiss Natl Pk, Runatsch 124 Chaste Planta Wildenberg, CH-7530 Zernez, Switzerland
[15] Northern Alberta Inst Technol, Ctr Boreal Res, 8102 99 Ave, Peace River, AB T8S1R2, Canada
[16] Univ Basque Country UPV EHU, Fac Sci & Technol, Dept Plant Biol & Ecol, Bilbao, Spain
[17] Univ Regina, Dept Biol, Regina, SK, Canada
[18] United Int Univ, Dept Environm & Dev Studies, Dhaka 1212, Bangladesh
[19] Univ Sunshine Coast, Trop Forests & People Res Ctr, Maroochydore, Qld 4556, Australia
[20] Univ Insubria, Dept Biotechnol & Life Sci, Via JH Dunant 3, I-21100 Varese, Italy
[21] Univ Ghent, Dept Environm, Q ForestLab, Ghent, Belgium
[22] Cirad, Forets & Soc, F-34398 Montpellier, France
[23] Univ Montpellier, Forets & Soc, CIRAD, Montpellier, France
[24] Univ Estado Santa Catarina, Lages, SC, Brazil
[25] Murdoch Univ, Harry Butler Inst, Perth, WA, Australia
[26] Natl Res & Innovat Agcy BRIN, Res Ctr Ecol & Ethnobiol, Bogor, Indonesia
[27] Zhejiang Univ, Coll Life Sci, Lab Systemat & Evolutionary Bot & Biodivers, Hangzhou 310058, Peoples R China
[28] Vrije Univ Brussel VUB, Dept Biol, Res Grp WILD, Pleinlaan 2, B-1050 Brussels, Belgium
[29] Friedrich Schiller Univ Jena, Inst Ecol & Evolut, Plant Biodivers Grp, Herbarium Haussknecht & Bot Garden, Jena D-07743, Germany
[30] Senckenberg Inst Plant Form & Funct Jena SIP, D-07743 Jena, Germany
[31] Imperial Coll London, Georgina Mace Ctr Living Planet, Dept Life Sci, Silwood Pk Campus, Ascot SL5 7PY, England
[32] Univ Utrecht, Bot Gardens, POB 80162, NL-3508 TD Utrecht, Netherlands
关键词
Plant ecology; Community assembly; Maximum entropy; Trait-based filtering; Dispersal mass effects; NONTRIVIAL APPLICATIONS; NICHE DIFFERENTIATION; TRAITS; ECOLOGY; MAXIMIZATION; REGRESSION; ABUNDANCE; MODELS; TESTS; GAP;
D O I
10.1016/j.ecoinf.2025.103031
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
An in-depth understanding of local plant community assembly is critical to direct conservation efforts to promising areas and increase the efficiency of management strategies. This, however, remains elusive due to the sheer complexity of ecological processes. The maximum entropy-based Community Assembly via Trait Selection (CATS) model was designed to quantify the relative contributions of trait-based filtering, dispersal mass effects, and stochastic processes on community assembly. As a maximum entropy model, it does so without introducing additional bias or assumptions. Despite its increasing use, questions regarding its robustness and potential limitations remain. Here, we compared model predictions using either local or database-derived trait values, across different levels of species richness and between different taxonomic levels. A total of 19 datasets and 790 plots were analysed, spanning multiple habitat types (n = 18) and biomes (n = 7). Results indicate trait value origin does indeed influence model outcomes, warranting caution in selecting the method for obtaining trait data. We hypothesise that, for example, intraspecific trait variation combined with trait-based filtering or stochastic processes causes local and database trait values to deviate, potentially even further exacerbated by imputing missing trait data. Furthermore, trait-related information obtained from the model decreased with increasing species richness. We further hypothesise this could signal that stochastic processes are more dominant within species-rich systems, for example, due to functional redundancy or the existence of multiple fitness strategies. This general pattern was conserved across biomes, although with varying strength, showing CATS' robustness despite these challenges.
引用
收藏
页数:15
相关论文
共 71 条
  • [1] Anderson D.R., Model Based Inference in the Life Sciences: A Primer on Evidence, (2007)
  • [2] Arim M., Pinelli V., Rodriguez-Tricot L., Ortiz E., Illarze M., Fagundez-Pachon C., Borthagaray A.I., Chance and necessity in the assembly of plant communities: Stochasticity increases with size, isolation and diversity of temporary ponds, J. Ecol., 111, 8, pp. 1641-1655, (2023)
  • [3] Aubin I., Deschenes E., Santala K., Emilson E.J.S., Schoonmaker A.L., McIntosh A.C.S., Bourgeois B., Cardou F., Dupuch A., Handa I.T., Lapointe M., Lavigne J., Maheu A., Nadeau S., Naeth M.A., Neilson E.W., Wiebe P.A., Restoring forest ecosystem services through trait-based ecology, Environ. Rev., 4, pp. 498-524, (2024)
  • [4] Baastrup-Spohr L., Sand-Jensen K., Nicolajsen S.V., Bruun H.H., From soaking wet to bone dry: predicting plant community composition along a steep hydrological gradient, J. Veg. Sci., 26, 4, pp. 619-630, (2015)
  • [5] Bernard-Verdier M., Navas M.-L., Vellend M., Violle C., Fayolle A., Garnier E., Community assembly along a soil depth gradient: contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland, J. Ecol., 100, 6, pp. 1422-1433, (2012)
  • [6] Brown A.M., Warton D.I., Andrew N.R., Binns M., Cassis G., Gibb H., The fourth-corner solution – using predictive models to understand how species traits interact with the environment, Methods Ecol. Evol., 5, 4, pp. 344-352, (2014)
  • [7] Chase J.M., Drought mediates the importance of stochastic community assembly, Proc. Natl. Acad. Sci., 104, 44, pp. 17430-17434, (2007)
  • [8] Chelli S., Klimesova J., Tsakalos J.L., Puglielli G., Unravelling the clonal trait space: Beyond above-ground and fine-root traits, J. Ecol., 112, pp. 730-740, (2024)
  • [9] Colin Cameron A., Windmeijer F.A.G., An R-squared measure of goodness of fit for some common nonlinear regression models, J. Econometrics, 77, 2, pp. 329-342, (1997)
  • [10] Cordlandwehr V., Meredith R.L., Ozinga W.A., Bekker R.M., van Groenendael J.M., Bakker J.P., Do plant traits retrieved from a database accurately predict on-site measurements?, J. Ecol., 101, 3, pp. 662-670, (2013)