Clifford's theorem for bricks

被引:0
作者
Kozakai, Yuta [1 ]
Sakai, Arashi [2 ]
机构
[1] Tokyo Univ Sci, Dept Math, 1-3 Kagurazaka,Shinjuku ku, Tokyo 1628601, Japan
[2] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya 4648602, Japan
关键词
Clifford's theorem; Bricks; Semibricks; Simple-minded collections; Wide subcategories; REPRESENTATIONS; CATEGORIES;
D O I
10.1016/j.jalgebra.2024.09.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group, N a normal subgroup of G, and k a field of characteristic p > 0. In this paper, we formulate the brick version of Clifford's theorem under suitable assumptions and prove it by using the theory of wide subcategories. As an application of our theorem, we consider the restrictions of semibricks and two-term simple-minded collections under the assumption that the index of the normal subgroup N in G is a p- power. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:765 / 785
页数:21
相关论文
共 23 条
  • [1] τ-tilting theory
    Adachi, Takahide
    Iyama, Osamu
    Reiten, Idun
    [J]. COMPOSITIO MATHEMATICA, 2014, 150 (03) : 415 - 452
  • [2] Alperin J. L., 1986, Modular representations as an intro-duction to the local representation theory of finite groups, V11, DOI [10.1017/CBO9780511623592, DOI 10.1017/CBO9780511623592]
  • [3] Asai S., 2020, Semibricks, Int. Math. Res. Not., V2018, P4993
  • [4] Wide Subcategories and Lattices of Torsion Classes
    Asai, Sota
    Pfeifer, Calvin
    [J]. ALGEBRAS AND REPRESENTATION THEORY, 2022, 25 (06) : 1611 - 1629
  • [5] Benson D., 1991, Cambridge Studies in Advanced Mathematics, V30
  • [6] Brüsde T, 2013, EMS SER CONGR REP, P135
  • [7] Representations induced in an invariant subgroup
    Clifford, AH
    [J]. ANNALS OF MATHEMATICS, 1937, 38 : 533 - 550
  • [8] Demonet L., 2023, Trans. Am. Math. Soc. Ser. B, V10, P542
  • [9] τ-Tilting Finite Algebras, Bricks, and -Vectors
    Demonet, Laurent
    Iyama, Osamu
    Jasso, Gustavo
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (03) : 852 - 892
  • [10] Schur's lemma for exact categories implies abelian
    Enomoto, Haruhisa
    [J]. JOURNAL OF ALGEBRA, 2021, 584 : 260 - 269