Plasma gas conversion in non-equilibrium conditions

被引:1
作者
Hegemann, Dirk [1 ]
Navascues, Paula [1 ]
Snoeckx, Ramses [1 ]
机构
[1] Empa, Swiss Fed Labs Mat Sci & Technol, Plasma & Coating Grp, Lerchenfeldstr 5, CH-9014 St Gallen, Switzerland
关键词
Entropy; Methane pyrolysis; Non-equilibrium plasma; Plasma chemistry; Specific energy input; CHEMICAL-KINETIC PROBLEMS; FUTURE NASA MISSIONS; METHANE CONVERSION; MICROWAVE PLASMA; NITROGEN;
D O I
10.1016/j.ijhydene.2024.12.351
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Gibbs free energy is a valuable thermodynamic potential to predict the spontaneity of reactions and the feasibility of chemical processes. At thermodynamic equilibrium a system's Gibbs free energy reaches its minimum, and its entropy is maximized. At this point, the entropy becomes unavailable for performing useful chemical work. Hence, temperature, T , is generally used to drive chemical reactions, especially in gas conversion processes. However, in systems far from equilibrium, changes in entropy can be harnessed to drive chemical reactions. In a non-thermal plasma, non-equilibrium conditions can be sustained with electron temperature exceeding gas temperature (T-e >> T-gas). More importantly, the chemical reaction rates are affected by the energy input into the plasma while the observed temperatures remain constant. Here, a new concept is introduced proposing the effective (average) energy input - which is related to a change in entropy at different (constant) temperatures under non-equilibrium conditions - as the fundamental parameter controlling gas phase reactions. Using this theoretically derived formalism, electron-driven reactions related to T e can be distinguished from thermally driven reactions by plasma gas heating related to T gas . This approach can explain observed conversion and efficiency trends, as demonstrated for plasma-based methane pyrolysis, and point towards further efficiency improvements for gas conversion processes under non-equilibrium plasma conditions e.g. as an important source for hydrogen.
引用
收藏
页码:548 / 555
页数:8
相关论文
共 48 条
[1]   The 2022 Plasma Roadmap: low temperature plasma science and technology [J].
Adamovich, I ;
Agarwal, S. ;
Ahedo, E. ;
Alves, L. L. ;
Baalrud, S. ;
Babaeva, N. ;
Bogaerts, A. ;
Bourdon, A. ;
Bruggeman, P. J. ;
Canal, C. ;
Choi, E. H. ;
Coulombe, S. ;
Donko, Z. ;
Graves, D. B. ;
Hamaguchi, S. ;
Hegemann, D. ;
Hori, M. ;
Kim, H-H ;
Kroesen, G. M. W. ;
Kushner, M. J. ;
Laricchiuta, A. ;
Li, X. ;
Magin, T. E. ;
Thagard, S. Mededovic ;
Miller, V ;
Murphy, A. B. ;
Oehrlein, G. S. ;
Puac, N. ;
Sankaran, R. M. ;
Samukawa, S. ;
Shiratani, M. ;
Simek, M. ;
Tarasenko, N. ;
Terashima, K. ;
Thomas, E., Jr. ;
Trieschmann, J. ;
Tsikata, S. ;
Turner, M. M. ;
van der Walt, I. J. ;
van de Sanden, M. C. M. ;
von Woedtke, T. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (37)
[2]  
Bang S, 2023, PLASMA CHEM PLASMA P, V43, P1453, DOI 10.1007/s11090-023-10370-7
[3]   Kinetic Study for Plasma Assisted Cracking of NH3: Approaches and Challenges [J].
Bang, Seunghwan ;
Snoeckx, Ramses ;
Cha, Min Suk .
JOURNAL OF PHYSICAL CHEMISTRY A, 2023, 127 (05) :1271-1282
[4]   DIAGNOSTICS AND MODELING OF ECRH MICROWAVE DISCHARGES [J].
BEHRINGER, K .
PLASMA PHYSICS AND CONTROLLED FUSION, 1991, 33 (09) :997-1028
[5]   Neutral dissociation of methane by electron impact and a complete and consistent cross section set [J].
Bouwman, Dennis ;
Martinez, Andy ;
Braams, Bastiaan J. ;
Ebert, Ute .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2021, 30 (07)
[6]   Plasma reforming for hydrogen production: Pathways, reactors and storage [J].
Budhraja, Neeraj ;
Pal, Amit ;
Mishra, R. S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (07) :2467-2482
[7]   Temperature-independent, nonoxidative methane conversion in nanosecond repetitively pulsed DBD plasma [J].
Chen, Xiaoxiao ;
Zhang, Shuai ;
Li, Shi ;
Zhang, Cheng ;
Pan, Jie ;
Murphy, Anthony B. ;
Shao, Tao .
SUSTAINABLE ENERGY & FUELS, 2021, 5 (03) :787-800
[8]   Two-temperature models for nitrogen dissociation [J].
da Silva, M. Lino ;
Guerra, V. ;
Loureiro, J. .
CHEMICAL PHYSICS, 2007, 342 (1-3) :275-287
[9]  
Fridman A, 2008, PLASMA CHEMISTRY, P1, DOI 10.1017/CBO9780511546075
[10]  
Fridman A., 2024, Plasma Science and Technology