Bifurcations in the Kuramoto model with external forcing and higher-order interactions

被引:0
作者
Costa, Guilherme S. [1 ,2 ]
Novaes, Marcel [3 ,4 ]
de Aguiar, Marcus A. M. [1 ,2 ,4 ]
机构
[1] Univ Estadual Paulista, ICTP South Amer Inst Fundamental Res, BR-01140070 Sao Paulo, SP, Brazil
[2] Univ Estadual Paulista, Inst Fis Teor, BR-01140070 Sao Paulo, SP, Brazil
[3] Univ Fed Uberlandia, Inst Fis, BR-38408100 Uberlandia, MG, Brazil
[4] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
SYNCHRONIZATION; SYMMETRY; SYSTEMS;
D O I
10.1063/5.0239011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Synchronization is an important phenomenon in a wide variety of systems comprising interacting oscillatory units, whether natural (like neurons, biochemical reactions, and cardiac cells) or artificial (like metronomes, power grids, and Josephson junctions). The Kuramoto model provides a simple description of these systems and has been useful in their mathematical exploration. Here, we investigate this model by combining two common features that have been observed in many systems: External periodic forcing and higher-order interactions among the elements. We show that the combination of these ingredients leads to a very rich bifurcation scenario that produces 11 different asymptotic states of the system, with competition between forced and spontaneous synchronization. We found, in particular, that saddle-node, Hopf, and homoclinic manifolds are duplicated in regions of parameter space where the unforced system displays bi-stability.
引用
收藏
页数:11
相关论文
共 58 条
[1]   Global synchronization on time-varying higher-order structures [J].
Anwar, Md Sayeed ;
Ghosh, Dibakar ;
Carletti, Timoteo .
JOURNAL OF PHYSICS-COMPLEXITY, 2024, 5 (01)
[2]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[3]   Hopf normal form with SN symmetry and reduction to systems of nonlinearly coupled phase oscillators [J].
Ashwin, Peter ;
Rodrigues, Ana .
PHYSICA D-NONLINEAR PHENOMENA, 2016, 325 :14-24
[4]   Ott-Antonsen ansatz for the D-dimensional Kuramoto model: A constructive approach [J].
Barioni, Ana Elisa D. ;
de Aguiar, Marcus A. M. .
CHAOS, 2021, 31 (11)
[5]   Networks beyond pairwise interactions: Structure and dynamics [J].
Battiston, Federico ;
Cencetti, Giulia ;
Iacopini, Iacopo ;
Latora, Vito ;
Lucas, Maxime ;
Patania, Alice ;
Young, Jean-Gabriel ;
Petri, Giovanni .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2020, 874 :1-92
[6]   Higher-order organization of complex networks [J].
Benson, Austin R. ;
Gleich, David F. ;
Leskovec, Jure .
SCIENCE, 2016, 353 (6295) :163-166
[7]   Chimera state and route to explosive synchronization [J].
Berec, Vesna .
CHAOS SOLITONS & FRACTALS, 2016, 86 :75-81
[8]   Chaos in generically coupled phase oscillator networks with nonpairwise interactions [J].
Bick, Christian ;
Ashwin, Peter ;
Rodrigues, Ana .
CHAOS, 2016, 26 (09)
[9]   Symmetry-breaking higher-order interactions in coupled phase oscillators [J].
Biswas, Dhrubajyoti ;
Gupta, Sayan .
CHAOS SOLITONS & FRACTALS, 2024, 181
[10]   Stability diagram for the forced Kuramoto model [J].
Childs, Lauren M. ;
Strogatz, Steven H. .
CHAOS, 2008, 18 (04)