Cryodistribution System for Superconducting Tokamak Magnets

被引:0
作者
Chang, H. -s. [1 ]
Vaghela, H. [1 ]
Grillot, D. [1 ]
Shah, N. [2 ]
机构
[1] TER Org, F-13067 St Paul Les Durance, France
[2] ITER India Inst Plasma Res, Ahmadabad 380005, India
关键词
Magnets; Heating systems; Cooling; Customer relationship management; Helium; Plasma temperature; Cryogenics; Valves; Prevention and mitigation; Velocity control; ITER; liquid helium cooling; superconducting magnets; tokamak;
D O I
10.1109/TASC.2025.3527417
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The ITER Tokamak, equipped with large-scale superconducting (SC) magnets, requires cryogenic conditions sustained by helium coolant. The operation of these magnets presents significant challenges from the perspective of the helium cryogenic system. These challenges not only include substantial heat loads and their variations, leading to rapid pressure fluctuations in the process helium but also localized nuclear heating effects on the SC coils during the D-T fusion reactions to be managed by the cryogenic system for the safe operation of the magnets. To address these issues economically while ensuring operational stability and reliability, continuous modifications have been implemented throughout the design phases of the cryogenic system. In this proceeding, we provide a comprehensive summary of the design activities to date, offering an overview of how the ITER cryogenic system effectively manages and mitigates the challenges associated with the SC magnets while ensuring cost-effective operation.
引用
收藏
页数:4
相关论文
共 14 条
[1]  
[Anonymous], 2023, Raiffeisen Certificates inflation calculator
[2]  
[Anonymous], 2023, the European Commission report on European SMEs
[3]  
[Anonymous], 2020, ITER Organization internal document
[4]   Experimental results of ITER cold circulators towards the performance demonstration [J].
Bhattacharya, R. ;
Vaghela, H. ;
Sarkar, B. ;
Patel, P. ;
Das, J. ;
Srinivasa, M. ;
Isono, T. ;
Kawano, K. .
26TH INTERNATIONAL CRYOGENIC ENGINEERING CONFERENCE & INTERNATIONAL CRYOGENIC MATERIALS CONFERENCE 2016, 2017, 171
[5]   Optimization of the ITER Cryodistribution for an Efficient Cooling of the Magnet System [J].
Chang, H. -S. ;
Maekawa, R. ;
Forgeas, A. ;
Clough, M. ;
Chalifour, M. ;
Vaghela, H. ;
Bhattacharya, R. ;
Sarkar, B. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2016, 26 (04)
[6]   Feasibility Studies of the ITER Cryogenic System at KSTAR [J].
Chang, H. -S. ;
Forgeas, A. ;
Vincent, G. ;
Maekawa, R. ;
Serio, L. ;
Park, Y. -M. ;
Cho, K. -W. ;
Park, D. -S. ;
Joo, J. -J. ;
Moon, K. -M. ;
Kalinin, V. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2012, 22 (03)
[7]   Test Results of Pressure Head Mitigation of Supercritical Helium Across Cold Circulators at KSTAR for the Justification of the ITER Central Solenoid Cooling Circuit Design [J].
Chang, H-S ;
Maekawa, R. ;
Forgeas, A. ;
Bonneton, M. ;
Chalifour, M. ;
Serio, L. ;
Park, D-S ;
Joo, J-J ;
Moon, K-M ;
Lee, H-J ;
Park, Y-M .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2014, 24 (03)
[8]   A simple study for an optimized operation of the ITER Cryodistribution cold rotating machines [J].
Chang, Hyun-Sik ;
Vaghela, Hitensinh ;
Grillot, David ;
Patel, Pratik ;
Shah, Nitin .
CRYOGENICS, 2023, 136
[9]   The DEMO magnet system - Status and future challenges [J].
Corato, V. ;
Vorpahl, C. ;
Sedlak, K. ;
Anvar, V. A. ;
Bennet, J. ;
Biancolini, M. E. ;
Bonne, F. ;
Bonifetto, R. ;
Boso, D. P. ;
Brighenti, A. ;
Bruzzone, P. ;
Celentano, G. ;
Della Corte, A. ;
De Marzi, G. ;
D'Auria, V. ;
Dematte, F. ;
Dembkowska, A. ;
Dicuonzo, O. ;
Zignani, C. Fiamozzi ;
Fietz, W. H. ;
Frittitta, C. ;
Giannini, L. ;
Giorgetti, F. ;
Guarino, R. ;
Heller, R. ;
Hoa, C. ;
Huguet, M. ;
Jiolat, G. ;
Kumar, M. ;
Lacroix, B. ;
Lewandowska, M. ;
Misiara, N. ;
Morici, L. ;
Muzzi, L. ;
Nickel, D. S. ;
Nicollet, S. ;
Nijhuis, A. ;
Nunio, F. ;
Portafaix, C. ;
Sarasola, X. ;
Savoldi, L. ;
Tiseanu, I. ;
Tomassetti, G. ;
Torre, A. ;
Turtu, S. ;
Uglietti, D. ;
Vallcorba, R. ;
Weiss, K. -p. ;
Wesche, R. ;
Wolf, M. J. .
FUSION ENGINEERING AND DESIGN, 2022, 174
[10]   The cost of coolers for cooling superconducting devices at temperatures at 4.2 K, 20 K, 40 K and 77 K [J].
Green, M. A. .
ADVANCES IN CRYOGENIC ENGINEERING, 2015, 101