Coupled CANN-DEM simulation in solid mechanics

被引:0
作者
Hildebrand, Stefan [1 ]
Friedrich, Jonathan Georg [1 ]
Mohammadkhah, Melika [1 ]
Klinge, Sandra [1 ]
机构
[1] TU Berlin, Dept Struct Mech & Anal, Str 17 Juni 135, D-10623 Berlin, Germany
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2025年 / 6卷 / 01期
关键词
NN; solid mechanics; CANN; deep energy method; DEM; material modeling; hyperelasticity; IDENTIFICATION; NETWORKS;
D O I
10.1088/2632-2153/adaf74
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A general, unified neural network approach as replacement for the finite element method without the need for analytic expressions for material laws is suggested. The complete simulation process from the material characterization to simulations on a structural level takes place in the new neural network framework. The drawback of many conventional analytic expressions of material laws to require large numbers of experiments for parametrization is addressed by an integrated inverse approach. Specifically, an adaptation of the Deep Energy Method is combined with a Constitutive Artificial Neural Network (CANN) and trained on measured displacement fields and prescribed boundary conditions in a coupled procedure. Tests on compressible and incompressible Neo-Hookean solids with up to twelve CANN parameters show high accuracy of the approach and very good generalization of CANNs. A small extent of data is required for robust and reliable training.
引用
收藏
页数:18
相关论文
共 55 条
[1]  
3DS Dassault Systemes, 2016, Abaqus analysis user's manual Dassault Systemes
[2]   State-of-the-art in artificial neural network applications: A survey [J].
Abiodun, Oludare Isaac ;
Jantan, Aman ;
Omolara, Abiodun Esther ;
Dada, Kemi Victoria ;
Mohamed, Nachaat AbdElatif ;
Arshad, Humaira .
HELIYON, 2018, 4 (11)
[3]   A deep learning energy method for hyperelasticity and viscoelasticity [J].
Abueidda, Diab W. ;
Koric, Seid ;
Abu Al-Rub, Rashid ;
Parrott, Corey M. ;
James, Kai A. ;
Sobh, Nahil A. .
EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2022, 95
[4]  
Ali Aidy, 2010, American Journal of Engineering and Applied Sciences, V3, P232, DOI 10.3844/ajeassp.2010.232.239
[5]  
[Anonymous], 2017, NIPS AUTODIFF WORKSH
[6]  
ANSYS I, 2021, Energy functional
[7]  
Aygn S., 2020, Polymers, V12, P75, DOI [10.3390/polym12112575, DOI 10.3390/POLYM12112575]
[8]   Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications [J].
Bashir, Shahid ;
Hina, Maryam ;
Iqbal, Javed ;
Rajpar, A. H. ;
Mujtaba, M. A. ;
Alghamdi, N. A. ;
Wageh, S. ;
Ramesh, K. ;
Ramesh, S. .
POLYMERS, 2020, 12 (11) :1-60
[9]   A new constitutive model for the compressibility of elastomers at finite deformations [J].
Bischoff, JE ;
Arruda, EM ;
Grosh, K .
RUBBER CHEMISTRY AND TECHNOLOGY, 2001, 74 (04) :541-559
[10]   A Review of the Application of Machine Learning and Data Mining Approaches in Continuum Materials Mechanics [J].
Bock, Frederic E. ;
Aydin, Roland C. ;
Cyron, Christian J. ;
Huber, Norbert ;
Kalidindi, Surya R. ;
Klusemann, Benjamin .
FRONTIERS IN MATERIALS, 2019, 6