Vermicomposting reduces the antimicrobial resistance in livestock waste

被引:3
作者
Usui, Masaru [1 ]
Fukuda, Akira [1 ]
Azuma, Takashi [2 ]
Kobae, Yoshihiro [3 ]
Hori, Yuichi [4 ]
Kushima, Mitsutaka [4 ]
Katada, Satoshi [1 ]
Nakajima, Chie [5 ,6 ,7 ]
Suzuki, Yasuhiko [5 ,6 ,8 ]
机构
[1] Rakuno Gakuen Univ, Sch Vet Med, Ebetsu, Hokkaido 0698501, Japan
[2] Osaka Med & Pharmaceut Univ, Dept Pharm, Takatsuki, Osaka 5698686, Japan
[3] Rakuno Gakuen Univ, Dept Sustainable Agr, Ebetsu, Hokkaido 0698501, Japan
[4] Musca Inc, Tokyo 1030023, Japan
[5] Hokkaido Univ, Int Inst Zoonosis Control, Div Bioresources, Sapporo, Hokkaido 0600808, Japan
[6] Hokkaido Univ, Int Inst Zoonosis Control, Int Collaborat Unit, Sapporo, Hokkaido 0600808, Japan
[7] Hokkaido Univ, Div Div Vaccinol Clin Dev, Inst Vaccine Res & Dev, Sapporo, Hokkaido 0600808, Japan
[8] Hokkaido Univ, Inst Vaccine Res & Dev, Div Res Support, Sapporo, Hokkaido 0600808, Japan
来源
JOURNAL OF HAZARDOUS MATERIALS ADVANCES | 2024年 / 16卷
关键词
Antimicrobial resistance; Composting; Fertilizer; Manure; Microbiome; Vermicomposting; SWINE MANURE; PIG MANURE; GENES;
D O I
10.1016/j.hazadv.2024.100491
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Vermicomposting, a process in which housefly larvae are used to decompose organic waste, has attracted attention as a method for managing antimicrobial-resistant bacteria (ARB) in livestock manure. Vermicomposting effectively reduces antimicrobial resistance genes (ARGs) and residual antimicrobials. However, the evaluation of live bacteria, including ARB, remains scarce. Additionally, conventional DNA extraction methods include DNA from dead bacteria, impeding the accurate evaluation of ARG-associated risk in compost and the microbiome. This study assesses the effectiveness of vermicomposting pig manure against antimicrobial resistance (AMR) by evaluating the ARB, ARGs (focusing on DNA from live bacteria), and microbiome associated with vermicomposting processes. Vermicomposting significantly reduces the abundance of bacteria, including ARB, and decreases the ARG ( tetA, tetB, blaTEM, TEM , and bla CTX _ M ) copy number in live bacteria. Bacterial community analysis revealed an increase in the abundance of Gammaproteobacteria. . Moreover, the vermicomposted samples effectively cultivated myriad plants. Overall, vermicomposting effectively reduces the ARB and ARGs in pig manure, with potential benefits for plant growth and sustainable waste management. Hence, it can be widely applied to treat livestock manure and other organic wastes to combat AMR.
引用
收藏
页数:9
相关论文
共 27 条
[1]   A global baseline for qPCR-determined antimicrobial resistance gene prevalence across environments [J].
Abramova, Anna ;
Berendonk, Thomas U. ;
Bengtsson-Palme, Johan .
ENVIRONMENT INTERNATIONAL, 2023, 178
[2]   A review on vermicomposting of organic wastes [J].
Ali, Usman ;
Sajid, Nida ;
Khalid, Azeem ;
Riaz, Luqman ;
Rabbani, Muhammad Muaz ;
Syed, Jabir Hussain ;
Malik, Riffat Naseem .
ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2015, 34 (04) :1050-1062
[3]   Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 [J].
Bolyen, Evan ;
Rideout, Jai Ram ;
Dillon, Matthew R. ;
Bokulich, NicholasA. ;
Abnet, Christian C. ;
Al-Ghalith, Gabriel A. ;
Alexander, Harriet ;
Alm, Eric J. ;
Arumugam, Manimozhiyan ;
Asnicar, Francesco ;
Bai, Yang ;
Bisanz, Jordan E. ;
Bittinger, Kyle ;
Brejnrod, Asker ;
Brislawn, Colin J. ;
Brown, C. Titus ;
Callahan, Benjamin J. ;
Caraballo-Rodriguez, Andres Mauricio ;
Chase, John ;
Cope, Emily K. ;
Da Silva, Ricardo ;
Diener, Christian ;
Dorrestein, Pieter C. ;
Douglas, Gavin M. ;
Durall, Daniel M. ;
Duvallet, Claire ;
Edwardson, Christian F. ;
Ernst, Madeleine ;
Estaki, Mehrbod ;
Fouquier, Jennifer ;
Gauglitz, Julia M. ;
Gibbons, Sean M. ;
Gibson, Deanna L. ;
Gonzalez, Antonio ;
Gorlick, Kestrel ;
Guo, Jiarong ;
Hillmann, Benjamin ;
Holmes, Susan ;
Holste, Hannes ;
Huttenhower, Curtis ;
Huttley, Gavin A. ;
Janssen, Stefan ;
Jarmusch, Alan K. ;
Jiang, Lingjing ;
Kaehler, Benjamin D. ;
Bin Kang, Kyo ;
Keefe, Christopher R. ;
Keim, Paul ;
Kelley, Scott T. ;
Knights, Dan .
NATURE BIOTECHNOLOGY, 2019, 37 (08) :852-857
[4]   Improving the humification by additives during composting: A review [J].
Chen, Li ;
Chen, Yaoning ;
Li, Yuanping ;
Liu, Yihuan ;
Jiang, Hongjuan ;
Li, Hui ;
Yuan, Yu ;
Chen, Yanrong ;
Zou, Bin .
WASTE MANAGEMENT, 2023, 158 :93-106
[5]  
CLSI. Clinical and Laboratory Standards Institute, 2020, PERFORMANCE STANDARD, V30th
[6]  
Congilosi JL, 2021, J HAZARD MATER, V405, DOI [10.1016/j.jhazmat.2020.143634, 10.1016/j.jhazmat.2020.123634]
[7]   Influence of DNA from non-viable sources on the riverine water and biofilm microbiome, resistome, mobilome, and resistance gene host assignments [J].
Deshpande, A. S. ;
Fahrenfeld, N. L. .
JOURNAL OF HAZARDOUS MATERIALS, 2023, 446
[8]   Heated scallop-shell powder and lime nitrogen effectively decrease the abundance of antimicrobial-resistant bacteria in aerobic compost [J].
Enami, Masatoshi ;
Fukuda, Akira ;
Yamada, Michi ;
Kobae, Yoshihiro ;
Nakajima, Chie ;
Suzuki, Yasuhiko ;
Usui, Masaru .
ENVIRONMENTAL TECHNOLOGY & INNOVATION, 2024, 34
[9]   Viability-based quantification of antibiotic resistance genes and human fecal markers in wastewater effluent and receiving waters [J].
Eramo, Alessia ;
Medina, William R. Morales ;
Fahrenfeld, Nicole L. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 656 :495-502
[10]   New insights into the kinetics of bacterial growth and decay in pig manure-wheat straw aerobic composting based on an optimized PMA-qPCR method [J].
Ge, Jinyi ;
Huang, Guangqun ;
Sun, Xiaoxi ;
Yin, Hongjie ;
Han, Lujia .
MICROBIAL BIOTECHNOLOGY, 2019, 12 (03) :502-514