Glycosylation modification is an effective way to improve the solubility, stability, and bioavailability of flavonoids. In this study, a multifunctional flavonoid glycosyltransferase HtUGT73EW3 was identified from Helleborus thibetanus. HtUGT73EW3 exhibited multisite selectivity for 3-, 6-, 7-, 2 '-, 3 '-, and 4 '-OH of flavonoids and showed potent 3/3 '-, 3/4 '-, and 7/4 '-di-O-glycosylation activity. HtUGT73EW3 was able to glycosylate structurally diverse flavonoid aglycones and monoglycosides, and showed efficient glycosylation capacity toward flavonoid structures modified with functional groups at the C-3, C-7, C-8, and C-4 ' positions. Notably, the mutation of Gln85 to Leu greatly enhanced its catalytic activity, enabling not only the conversion of steroids and terpenoids, but also the improved utilization of UDP-sugars. Furthermore, the Q85L and I94A variants were found to catalyze specific 7,4 '- and 3,4 '-di-O-glycosylation, respectively. A cost-effective one-pot synthetic reaction was established by coupling AtSuSy and HtUGT73EW3, and the gram-scale synthesis of flavonoid 4 '-O-glucoside and 3,4 '-/7,4 '-di-O-glucoside was achieved by a fed-batch strategy.