Transition fronts of time periodic bistable reaction-diffusion equations around an obstacle

被引:2
作者
Sheng, Wei-Jie [1 ]
Li, Linlin [2 ]
Wang, Zhi-Cheng [3 ]
Wang, Mingxin [4 ]
机构
[1] Harbin Inst Technol, Sch Math, Harbin 150001, Heilongjiang, Peoples R China
[2] Univ Shanghai Sci & Technol, Coll Sci, Shanghai, Peoples R China
[3] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
[4] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454000, Henan, Peoples R China
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2025年 / 155卷 / 01期
关键词
TRAVELING CURVED FRONTS; FISHER-KPP EQUATIONS; GLOBAL STABILITY; WAVE SOLUTIONS; EXISTENCE; CYLINDER;
D O I
10.1007/s11854-024-0351-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the existence and qualitative properties of transition fronts for time periodic bistable reaction-diffusion equations around an obstacle. We first prove that any transition front connecting 0 and 1 admits a global mean speed equal to the speed of the planar traveling front in Omega = & Ropf;NK, where K is a compact set of & Ropf;N. Then we show that there is an almost V-shaped traveling front in exterior domains under the complete propagation. Namely, there is an entire solution emanating from a time periodic V-shaped traveling, and passing the obstacle K after encountering the obstacle, then recovering to the same V-shaped front and continuing to propagate in the same direction.
引用
收藏
页码:165 / 233
页数:69
相关论文
共 55 条
[1]   Periodic traveling waves and locating oscillating patterns in multidimensional domains [J].
Alikakos, ND ;
Bates, PW ;
Chen, XF .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (07) :2777-2805
[2]  
Berestycki H, 2007, CONTEMP MATH, V446, P101
[3]   Front blocking and propagation in cylinders with varying cross section [J].
Berestycki, Henri ;
Bouhours, Juliette ;
Chapuisat, Guillemette .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (03)
[4]   Generalized transition waves and their properties [J].
Berestycki, Henri ;
Hamel, Francois .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2012, 65 (05) :592-648
[5]   Bistable Traveling Waves around an Obstacle [J].
Berestycki, Henri ;
Hamel, Francois ;
Matano, Hiroshi .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (06) :729-788
[6]   Existence of nonplanar solutions of a simple model of premixed Bunsen flames [J].
Bonnet, A ;
Hamel, F .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 31 (01) :80-118
[7]  
Bu ZH, 2019, J DYN DIFFER EQU, V31, P1987, DOI 10.1007/s10884-018-9675-x
[8]   Existence and nonexistence of traveling wave solutions for a bistable reaction-diffusion equation in an infinite cylinder whose diameter is suddenly increased [J].
Chapuisat, G ;
Grenier, E .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (12) :1805-1816
[9]   Pulsating fronts for bistable on average reaction-diffusion equations in a time periodic environment [J].
Contri, Benjamin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 437 (01) :90-132
[10]   DYNAMICS OF TIME-PERIODIC REACTION-DIFFUSION EQUATIONS WITH FRONT-LIKE INITIAL DATA ON R [J].
Ding, Weiwei ;
Matano, Hiroshi .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (03) :2411-2462