Research Progress on Glioma Microenvironment and Invasiveness Utilizing Advanced Multi-Parametric Quantitative MRI

被引:2
作者
Song, Dandan [1 ]
Fan, Guoguang [1 ]
Chang, Miao [1 ]
机构
[1] China Med Univ, Dept Radiol, Hosp 1, 155 Nanjing North St, Shenyang 110001, Peoples R China
关键词
glioma; multi-parametric quantitative MRI; tumor microenvironment; invasive; genotyping; CENTRAL-NERVOUS-SYSTEM; ENHANCED PERFUSION MRI; INTRATUMORAL HETEROGENEITY; TUMOR HETEROGENEITY; BRAIN GLIOMAS; DIFFUSION; CLASSIFICATION; EXCHANGE; METRICS; GRADE;
D O I
10.3390/cancers17010074
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Magnetic resonance imaging (MRI) currently serves as the primary diagnostic method for glioma detection and monitoring. The integration of neurosurgery, radiation therapy, pathology, and radiology in a multi-disciplinary approach has significantly advanced its diagnosis and treatment. However, the prognosis remains unfavorable due to treatment resistance, inconsistent response rates, and high recurrence rates after surgery. These factors are closely associated with the complex molecular characteristics of the tumors, the internal heterogeneity, and the relevant external microenvironment. The complete removal of gliomas presents challenges due to their infiltrative growth pattern along the white matter fibers and perivascular space. Therefore, it is crucial to comprehensively understand the molecular features of gliomas and analyze the internal tumor heterogeneity in order to accurately characterize and quantify the tumor invasion range. The multi-parameter quantitative MRI technique provides an opportunity to investigate the microenvironment and aggressiveness of glioma tumors at the cellular, blood perfusion, and cerebrovascular response levels. Therefore, this review examines the current applications of advanced multi-parameter quantitative MRI in glioma research and explores the prospects for future development.
引用
收藏
页数:22
相关论文
共 145 条
[1]   Towards in vivo focal cortical dysplasia phenotyping using quantitative MRI [J].
Adler, Sophie ;
Lorio, Sara ;
Jacques, Thomas S. ;
Benova, Barbora ;
Gunny, Roxana ;
Cross, J. Helen ;
Baldeweg, Torsten ;
Carmichael, David W. .
NEUROIMAGE-CLINICAL, 2017, 15 :95-105
[2]   Value of Frequency Domain Resting-State Functional Magnetic Resonance Imaging Metrics Amplitude of Low-Frequency Fluctuation and Fractional Amplitude of Low-Frequency Fluctuation in the Assessment of Brain Tumor-Induced Neurovascular Uncoupling [J].
Agarwal, Shruti ;
Lu, Hanzhang ;
Pillai, Jay J. .
BRAIN CONNECTIVITY, 2017, 7 (06) :382-389
[3]   The Resting-State Functional Magnetic Resonance Imaging Regional Homogeneity Metrics-Kendall's Coefficient of Concordance-Regional Homogeneity and Coherence-Regional Homogeneity-Are Valid Indicators of Tumor-Related Neurovascular Uncoupling [J].
Agarwal, Shruti ;
Sair, Haris, I ;
Pillai, Jay J. .
BRAIN CONNECTIVITY, 2017, 7 (04) :228-235
[4]   Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas [J].
Albert, Nathalie L. ;
Weller, Michael ;
Suchorska, Bogdana ;
Galldiks, Norbert ;
Soffietti, Riccardo ;
Kim, Michelle M. ;
La Fougere, Christian ;
Pope, Whitney ;
Law, Ian ;
Arbizu, Javier ;
Chamberlain, Marc C. ;
Vogelbaum, Michael ;
Ellingson, Ben M. ;
Tonn, Joerg C. .
NEURO-ONCOLOGY, 2016, 18 (09) :1199-1208
[5]   Neurite orientation dispersion and density imaging reveals white matter microstructural alterations in adults with autism [J].
Andica, Christina ;
Kamagata, Koji ;
Kirino, Eiji ;
Uchida, Wataru ;
Irie, Ryusuke ;
Murata, Syo ;
Aoki, Shigeki .
MOLECULAR AUTISM, 2021, 12 (01)
[6]   Clinical feasibility of using mean apparent propagator (MAP) MRI to characterize brain tissue microstructure [J].
Avram, Alexandru V. ;
Sarlls, Joelle E. ;
Barnett, Alan S. ;
Ozarslan, Evren ;
Thomas, Cibu ;
Irfanoglu, M. Okan ;
Hutchinson, Elizabeth ;
Pierpaoli, Carlo ;
Basser, Peter J. .
NEUROIMAGE, 2016, 127 :422-434
[7]   Diffusion-time dependent diffusion MRI: effect of diffusion-time on microstructural mapping and prediction of prognostic features in breast cancer [J].
Ba, Ruicheng ;
Wang, Xiaoxia ;
Zhang, Zelin ;
Li, Qing ;
Sun, Yi ;
Zhang, Jiuquan ;
Wu, Dan .
EUROPEAN RADIOLOGY, 2023, 33 (09) :6226-6237
[8]   MR Fingerprinting of Adult Brain Tumors: Initial Experience [J].
Badve, C. ;
Yu, A. ;
Dastmalchian, S. ;
Rogers, M. ;
Ma, D. ;
Jiang, Y. ;
Margevicius, S. ;
Pahwa, S. ;
Lu, Z. ;
Schluchter, M. ;
Sunshine, J. ;
Griswold, M. ;
Sloan, A. ;
Gulani, V. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2017, 38 (03) :492-499
[9]   Noninvasive amide proton transfer magnetic resonance imaging in evaluating the grading and cellularity of gliomas [J].
Bai, Yan ;
Lin, Yusong ;
Zhang, Wei ;
Kong, Lingfei ;
Wang, Lifu ;
Zuo, Panli ;
Vallines, Ignacio ;
Schmitt, Benjamin ;
Tian, Jie ;
Song, Xiaolei ;
Zhou, Jinyuan ;
Wang, Meiyun .
ONCOTARGET, 2017, 8 (04) :5834-5842
[10]   Grading of Gliomas by Using Monoexponential, Biexponential, and Stretched Exponential Diffusion-weighted MR Imaging and Diffusion Kurtosis MR Imaging [J].
Bai, Yan ;
Lin, Yusong ;
Tian, Jie ;
Shi, Dapeng ;
Cheng, Jingliang ;
Haacke, E. Mark ;
Hong, Xiaohua ;
Ma, Bo ;
Zhou, Jinyuan ;
Wang, Meiyun .
RADIOLOGY, 2016, 278 (02) :496-504