Domain Adaptation and Generalization: A Low-Complexity Approach

被引:0
|
作者
Niemeijer, Joshua [1 ]
Schaefer, Joerg P. [1 ]
机构
[1] German Aerosp Ctr DLR, Cologne, Germany
来源
CONFERENCE ON ROBOT LEARNING, VOL 205 | 2022年 / 205卷
关键词
unsupervised domain adaptation; semantic segmentation; domain generalization;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Well-performing deep learning methods are essential in today's perception of robotic systems such as autonomous driving vehicles. Ongoing research is due to the real-life demands for robust deep learning models against numerous domain changes and cheap training processes to avoid costly manual-labeling efforts. These requirements are addressed by unsupervised domain adaptation methods, in particular for synthetic to real-world domain changes. Recent top-performing approaches are hybrids consisting of multiple adaptation technologies and complex training processes. I n contrast, this work proposes EasyAdap, a simple and easy-to-use unsupervised domain adaptation method achieving near state-of-the-art performance on the synthetic to real-world domain change. Our evaluation consists of a comparison to numerous top-performing methods, and it shows the competitiveness and further potential of domain adaptation and domain generalization capabilities of our method. We contribute and focus on an extensive discussion revealing possible reasons for domain generalization capabilities, which is necessary to satisfy real-life application's demands.
引用
收藏
页码:1081 / 1091
页数:11
相关论文
共 50 条
  • [41] Domain Generalization in Biosignal Classification
    Dissanayake, Theekshana
    Fernando, Tharindu
    Denman, Simon
    Ghaemmaghami, Houman
    Sridharan, Sridha
    Fookes, Clinton
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2021, 68 (06) : 1978 - 1989
  • [42] Domain generalization by distribution estimation
    Chen, Sentao
    Hong, Zijie
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (10) : 3457 - 3470
  • [43] Domain generalization in nematode classification
    Zhu, Yi
    Zhuang, Jiayan
    Ye, Sichao
    Xu, Ningyuan
    Xiao, Jiangjian
    Gu, Jianfeng
    Fang, Yiwu
    Peng, Chengbin
    Zhu, Ying
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 207
  • [44] Decomposed adversarial domain generalization
    Chen, Sentao
    KNOWLEDGE-BASED SYSTEMS, 2023, 263
  • [45] Attention Diversification for Domain Generalization
    Meng, Rang
    Li, Xianfeng
    Chen, Weijie
    Yang, Shicai
    Song, Jie
    Wang, Xinchao
    Zhang, Lei
    Song, Mingli
    Xie, Di
    Pu, Shiliang
    COMPUTER VISION, ECCV 2022, PT XXXIV, 2022, 13694 : 322 - 340
  • [46] Domain generalization by distribution estimation
    Sentao Chen
    Zijie Hong
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 3457 - 3470
  • [47] Domain Generalization with Small Data
    Chen, Kecheng
    Gal, Elena
    Yan, Hong
    Li, Haoliang
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (08) : 3172 - 3190
  • [48] Domain Generalization with Interpolation Robustness
    Palakkadavath, Ragja
    Thanh Nguyen-Tang
    Le, Hung
    Venkatesh, Svetha
    Gupta, Sunil
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 222, 2023, 222
  • [49] Domain Generalization by Functional Regression
    Holzleitner, Markus
    Pereverzyev, Sergei V.
    Zellinger, Werner
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2024, 45 (03) : 259 - 281
  • [50] Domain-Specific Risk Minimization for Domain Generalization
    Zhang, Yi-Fan
    Wang, Jindong
    Liang, Jian
    Zhang, Zhang
    Yu, Baosheng
    Wang, Liang
    Tao, Dacheng
    Xie, Xing
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 3409 - 3421