Further norm and numerical radii inequalities for operators involving a positive operator

被引:1
作者
Altwaijry, Najla [1 ]
Conde, Cristian [2 ,3 ]
Dragomir, Silvestru Sever [4 ,5 ]
Feki, Kais [6 ]
机构
[1] King Saud Univ, Dept Math, Coll Sci, POB 2455, Riyadh 11451, Saudi Arabia
[2] Consejo Nacl Invest Cient & Tecn, Buenos Aires, Argentina
[3] Univ Nacl Gral Sarmiento, Inst Ciencias, J M Gutierrez 1150,B1613GSX, Los Polvorines, Argentina
[4] Appl Math Res Grp, Victoria Univ, ISILC, POB 14428, Melbourne, Vic 8001, Australia
[5] RMIT Univ, Sch Sci, Math Sci, GPO Box 2476V, Melbourne, Vic 3001, Australia
[6] Univ Sfax, Fac Sci Sfax, Lab Phys Math & Applicat LR ES 22 13, Sfax 3018, Tunisia
来源
AIMS MATHEMATICS | 2025年 / 10卷 / 02期
关键词
positive operator; Hilbert space; numerical radius; operator norm; inequalities; SPACE; BUZANO;
D O I
10.3934/math.2025126
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The article examines inequalities for norms and numerical radii of bounded linear operators on complex Hilbert spaces. It focuses on scenarios where three operators are involved, with one being positive, and investigates their sums or products. Some of our findings extend existing inequalities established in the literature.
引用
收藏
页码:2684 / 2696
页数:13
相关论文
共 25 条
[1]  
Abu-Omar A, 2015, HOUSTON J MATH, V41, P1163
[2]   Operator Jensen's Inequality for Operator Superquadratic Functions [J].
Alomari, Mohammad W. ;
Chesneau, Christophe ;
Al-Khasawneh, Ahmad .
AXIOMS, 2022, 11 (11)
[3]   Norm and Numerical Radius Inequalities Related to the Selberg Operator [J].
Altwaijry, Najla ;
Conde, Cristian ;
Dragomir, Silvestru Sever ;
Feki, Kais .
SYMMETRY-BASEL, 2023, 15 (10)
[4]   Some Refinements of Selberg Inequality and Related Results [J].
Altwaijry, Najla ;
Conde, Cristian ;
Dragomir, Silvestru Sever ;
Feki, Kais .
SYMMETRY-BASEL, 2023, 15 (08)
[5]  
Bhunia P., 2022, LECT NUMERICAL RADIU
[6]   Improvement of A-Numerical Radius Inequalities of Semi-Hilbertian Space Operators [J].
Bhunia, Pintu ;
Nayak, Raj Kumar ;
Paul, Kallol .
RESULTS IN MATHEMATICS, 2021, 76 (03)
[7]   Refinements of A-numerical radius inequalities and their applications [J].
Bhunia, Pintu ;
Nayak, Raj Kumar ;
Paul, Kallol .
ADVANCES IN OPERATOR THEORY, 2020, 5 (04) :1498-1511
[8]   Generalized Buzano inequality [J].
Bottazzi, Tamara ;
Conde, Cristian .
FILOMAT, 2023, 37 (27) :9377-9390
[9]   Some Simpson-like Inequalities Involving the (s,m)-Preinvexity [J].
Chiheb, Tarek ;
Meftah, Badreddine ;
Moumen, Abdelkader ;
Mesmouli, Mouataz Billah ;
Bouye, Mohamed .
SYMMETRY-BASEL, 2023, 15 (12)
[10]  
Dragomir S. S, 2004, Discrete inequalities of the Cauchy-Bunyakovsky-Schwarz type