Sodium Bicarbonate Tolerance During Seedling Stages of Maize (Zea mays L.) Lines

被引:0
|
作者
Tian, Huijuan [1 ,2 ]
Ding, Shuqi [1 ,2 ]
Zhang, Dan [1 ,2 ]
Wang, Jinbin [1 ,2 ]
Hu, Mengting [1 ,2 ]
Yang, Kaizhi [1 ,2 ]
Hao, Ying [1 ,2 ]
Qiao, Nan [1 ,2 ]
Du, Wentao [1 ,2 ]
Li, Ruifeng [1 ,2 ]
Yang, Xudong [1 ,2 ]
Xu, Ruohang [1 ,2 ]
机构
[1] Tarim Univ, Coll Agr, Alar, Peoples R China
[2] Key Lab Genet Improvement & Efficient Prod Special, Alar, Peoples R China
来源
FOOD AND ENERGY SECURITY | 2024年 / 13卷 / 05期
基金
中国国家自然科学基金;
关键词
affiliation function analysis; alkali tolerance screening; comprehensive evaluation; ridge regression; LEAF WATER RELATIONS; COMPREHENSIVE EVALUATION; SALT-TOLERANT; STRESS; GROWTH; GERMINATION; SALINE; LEAVES; RICE; ACCUMULATION;
D O I
10.1002/fes3.70013
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
(1) Soil alkalinization and salinization represent a growing global challenge. Maize (Zea mays L.), with its relatively low tolerance to salt and alkali, is increasingly vulnerable to saline-alkali stress. Identifying maize genotypes that can withstand salinity and alkalinity is crucial to broaden the base of salt-alkali-tolerant maize germplasm. (2) In this study, we screened 65 maize germplasm resources for alkali stress using a 60 mM NaHCO3 solution. We measured fifteen morphological and physiological indices, including seedling height, stem thickness, and leaf area. Various analytical methods-correlation analysis, principal component analysis, subordinate function analysis, cluster analysis, stepwise discriminant analysis, and ridge regression analysis-were used to assess the seedling alkali tolerance of these maize germplasm resources. The physiological indices of six tested maize varieties were analyzed in greater detail. (3) The findings revealed complex correlations among traits, particularly strong negative associations between conductivity and root traits such as length, volume, surface area, diameter, and number of branches. The 15 evaluation indices were reduced to 7 principal components, explaining 77.89% of the variance. By applying affiliation functions and weights, we derived a comprehensive evaluation of maize seedling alkali tolerance. Notably, three germplasms-Liang Yu 99, Bi Xiang 638, and Gan Xin 2818-demonstrated significant comprehensive seedling alkali tolerance. Cluster analysis grouped the 65 maize germplasm resources into four distinct categories (I, II, III, and IV). The results of the cluster analysis were confirmed by multiclass stepwise discriminant analysis, which achieved a correct classification rate of 92.3% for 60 maize genotypes regarding alkalinity tolerance. Using principal component and ridge regression analyses, we formulated a regression equation for alkali tolerance: D-value = -1.369 + 0.002 * relative root volume + 0.003 * relative number of root forks + 0.006 * relative chlorophyll SPAD + 0.005 * relative stem thickness + 0.005 * relative plant height + 0.001 * relative conductivity + 0.002 * relative dry weight of underground parts. Under sodium bicarbonate stress, morphological indices and germination rates were significantly reduced, germination was inhibited, photosynthetic pigment levels in maize leaves decreased to varying degrees, and the activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) significantly increased. Alkali stress markedly enhanced the antioxidant enzyme activities in maize varieties, with alkali-resistant varieties exhibiting a greater increase in antioxidant enzyme activities than alkali-sensitive varieties under such stress. (4) By screening for alkali tolerance in maize seedlings, the identified alkali-tolerant genotypes can be further utilized as suitable donor parents, thereby enhancing the use of alkali-tolerant germplasm resources and providing theoretical guidance for maize cultivation in saline-alkaline environments.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Genetics of drought tolerance at seedling and maturity stages in Zea mays L.
    Khan, Nazar H.
    Ahsan, Muhammad
    Naveed, Muhammad
    Sadaqat, Hafeez A.
    Javed, Imran
    SPANISH JOURNAL OF AGRICULTURAL RESEARCH, 2016, 14 (03)
  • [2] Screening of salt tolerance of maize (Zea mays L.) lines using membership function value and GGE biplot analysis
    Tian, Huijuan
    Liu, Hong
    Zhang, Dan
    Hu, Mengting
    Zhang, Fulai
    Ding, Shuqi
    Yang, Kaizhi
    PEERJ, 2024, 12
  • [3] Brassinosteroid and gibberellin control of seedling traits in maize (Zea mays L.)
    Hu, Songlin
    Sanchez, Darlene L.
    Wang, Cuiling
    Lipka, Alexander E.
    Yin, Yanhai
    Gardner, Candice A. C.
    Lubberstedt, Thomas
    PLANT SCIENCE, 2017, 263 : 132 - 141
  • [4] Lead Toxicity-Mediated Growth and Metabolic Alterations at Early Seedling Stages of Maize (Zea mays L.)
    Talha, Muhammad
    Shani, Muhammad Yousaf
    Ashraf, Muhammad Yasin
    De Mastro, Francesco
    Brunetti, Gennaro
    Khan, Muhammad Kashif Riaz
    Gillani, Syed Wajih ul Hassan Shah
    Khan, Adeel
    Abbas, Shahid
    Cocozza, Claudio
    PLANTS-BASEL, 2023, 12 (18):
  • [5] SCREENING FOR SALT TOLERANCE IN MAIZE (ZEA MAYS L.) HYBRIDS AT AN EARLY SEEDLING STAGE
    Akram, Muhammad
    Ashraf, Muhammad Yasin
    Ahmad, Rashid
    Waraich, Ejaz Ahmed
    Iqbal, Javed
    Mohsan, Muhammad
    PAKISTAN JOURNAL OF BOTANY, 2010, 42 (01) : 141 - 154
  • [6] Effects of priming techniques on seed germination and seedling emergence of maize (Zea mays L.)
    Mir-Mahmoodi, Tooraj
    Ghassemi-Golezani, Kazem
    Habibi, Davood
    Paknezhad, Farzad
    Ardekani, Mohammad Reza
    JOURNAL OF FOOD AGRICULTURE & ENVIRONMENT, 2011, 9 (02): : 200 - 202
  • [7] Evaluation of salt tolerance in maize (Zea mays L.) at seedling stage through morphological characters and salt tolerance index
    Masuda, Mst Salma
    Azad, Mohammad Abul Kalam
    Hasanuzzaman, M.
    Arifuzzaman, Md.
    PLANT PHYSIOLOGY REPORTS, 2021, 26 (03) : 419 - 427
  • [8] Arsenic accumulation and distribution in the tissues of inbred lines in maize (Zea mays L.)
    Liu, Z. H.
    Li, W. H.
    Qi, H. Y.
    Song, G. L.
    Ding, D.
    Fu, Z. Y.
    Liu, J. B.
    Tang, J. H.
    GENETIC RESOURCES AND CROP EVOLUTION, 2012, 59 (08) : 1705 - 1711
  • [9] Screening for Drought Tolerance in Maize (Zea mays L.) Germplasm Using Germination and Seedling Traits under Simulated Drought Conditions
    Badr, Abdelfattah
    El-Shazly, Hanaa H.
    Tarawneh, Rasha A.
    Boerner, Andreas
    PLANTS-BASEL, 2020, 9 (05):
  • [10] Salt Tolerance Screening in Six Maize (Zea mays L.) Genotypes using Multivariate Cluster Analysis
    Cha-um, Suriyan
    Kirdmanee, Chalermpol
    PHILIPPINE AGRICULTURAL SCIENTIST, 2010, 93 (02) : 156 - 164