Effect of Oxygen Spillover on Stable Ni3Fe1 Alloy for High-Performance Dry Reforming of Methane

被引:0
作者
Li, Yubin [1 ]
Kang, Yuxin [1 ]
Kang, Antai [1 ]
Liu, Xiangyang [1 ]
Li, Sha [1 ,3 ]
Qiu, Li [1 ]
Zhang, Weimin [2 ]
Li, Ruifeng [1 ,2 ]
Yan, Xiaoliang [1 ,2 ]
机构
[1] Taiyuan Univ Technol, Coll Chem & Chem Engn, Taiyuan 030024, Shanxi, Peoples R China
[2] Taiyuan Univ Technol, State Key Lab Clean & Efficient Coal Utilizat, Taiyuan 030024, Shanxi, Peoples R China
[3] Taiyuan Inkall Pen & Ink Technol Co Ltd, Taiyuan 030032, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
CATALYTIC-ACTIVITY; NI; CARBON; CO2; FE; RESISTANCE; STABILITY; DIOXIDE; FE2O3; RATIO;
D O I
10.1021/acs.iecr.4c04958
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Ni-Fe alloy catalysts represent promising alternatives for dry reforming of methane (DRM). However, the strong affinity of Fe for oxygen caused progressive Fe segregation on the alloy, leading to a decline in catalytic properties. Herein, we explored an efficient approach to create highly dispersed CeO2 clusters on an Al2O3 support for anchoring the stable Ni3Fe1 alloy using the oxygen spillover effect. CH4 and CO2 conversions as well as the H2/CO ratio were maintained at 73.7%, 81.6%, and 0.87 at 700 degrees C, respectively, on the optimal Ni3Fe1/1CeO2-16Al2O3. This catalyst featured plentiful oxygen vacancies, strong interactions between the metal and support, and moderate CO2 activation centers. These collective effects enable the oxygen spillover from FeO x toward the proximate vacancies on CeO2. These oxygen species were consumed along with the generation of vacancies by carbon species. The oxygen spillover effect could not only stabilize the alloy structures but alleviate carbon deposition in DRM.
引用
收藏
页码:7679 / 7688
页数:10
相关论文
共 50 条
  • [1] le Sache E., Pastor-Pereza L., Watson D., Sepulveda-Escribano A., Reina T.R., Ni stabilised on inorganic complex structures: Superior catalysts for chemical CO<sub>2</sub> recycling via dry reforming of methane, Appl. Catal. B: Environ., 236, pp. 458-465, (2018)
  • [2] Zhang T.T., Liu Z.X., Zhu Y.A., Liu Z.C., Sui Z.J., Zhu K.K., Zhou X.G., Dry reforming of methane on Ni-Fe-MgO catalysts: Influence of Fe on carbon-resistant property and kinetics, Appl. Catal. B: Environ., 264, (2020)
  • [3] Malaibari Z.O., Croiset E., Amin A., Epling W., Effect of interactions between Ni and Mo on catalytic properties of a bimetallic Ni-Mo/Al<sub>2</sub>O<sub>3</sub> propane reforming catalyst, Appl. Catal. A: Gen., 490, pp. 80-92, (2015)
  • [4] Tomishige K., Li D.L., Tamura M., Nakagawa Y., Nickel-iron alloy catalysts for reforming of hydrocarbons: Preparation, structure, and catalytic properties, Catal. Sci. Technol., 7, pp. 3952-3979, (2017)
  • [5] Li X.D., Yan B.H., Yao S.Y., Kattel S., Chen J.G.G., Wang T.F., Oxidative dehydrogenation and dry reforming of n-butane with CO<sub>2</sub> over NiFe bimetallic catalysts, Appl. Catal. B: Environ., 231, pp. 213-223, (2018)
  • [6] Song Z.W., Wang Q.Q., Guo C., Li S., Yan W.J., Jiao W.Y., Qiu L., Yan X.L., Li R.F., The improved effect of Fe on the stable NiFe/Al<sub>2</sub>O<sub>3</sub> catalyst in low-temperature dry reforming of methane, Ind. Eng. Chem. Res., 59, pp. 17250-17258, (2020)
  • [7] Shah S., Hong J.Y., Cruz L., Wasantwisut S., Bare S.R., Gilliard-AbdulAziz K.L., Dynamic tracking of NiFe smart catalysts using in situ X-ray absorption spectroscopy for the dry methane reforming reaction, ACS Catal., 13, pp. 3990-4002, (2023)
  • [8] Tsoukalou A., Imtiaz Q., Kim S.M., Abdala P.M., Yoon S., Muller C.R., Dry reforming of methane over bimetallic Ni-M/La<sub>2</sub>O<sub>3</sub> (M = Co, Fe): The effect of the rate of La<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> formation and phase stability on the catalytic activity and stability, J. Catal., 343, pp. 208-214, (2016)
  • [9] Margossian T., Larmier K., Kim S.M., Krumeich F., Muller C., Coperet C., Supported bimetallic NiFe nanoparticles through colloid synthesis for improved dry reforming performance, ACS Catal., 7, pp. 6942-6948, (2017)
  • [10] Theofanidis S.A., Galvita V.V., Sabbe M., Poelman H., Detavernier C., Marin G.B., Controlling the stability of a Fe-Ni reforming catalyst: Structural organization of the active components, Appl. Catal. B: Environ., 209, pp. 405-416, (2017)