Polynomial Identities for Binomial Sums of Harmonic Numbers of Higher Order

被引:0
作者
Komatsu, Takao [1 ]
Sury, B. [2 ]
机构
[1] Nagasaki Univ, Fac Educ, Nagasaki 8528521, Japan
[2] Indian Stat Inst, Stat Math Unit, 8th Mile Mysore Rd, Bangalore 560059, India
关键词
polynomial identities; harmonic numbers; determinant; Bell polynomials;
D O I
10.3390/math13020321
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the formulas for binomial sums of harmonic numbers of higher order & sum;k=0nHk(r)nk(1-q)kqn-k=Hn(r)-& sum;j=1nDr(n,j)qjj. Recently, Mneimneh proved that D1(n,j)=1. In this paper, we find several different expressions of Dr(n,j) for r >= 1.
引用
收藏
页数:12
相关论文
共 19 条