Pyroptosis-preconditioned mesenchymal stromal cell-derived extracellular vesicles as advanced nanomedicines for treating inflammatory diseases

被引:0
|
作者
Wu, Qianyi [1 ,2 ,3 ]
Liu, Shuyun [1 ,2 ]
Zhao, Meng [1 ,2 ,3 ]
Wang, Yizhuo [1 ,2 ]
Lv, Ke [1 ,2 ]
Zhu, Jiaying [3 ]
Liu, Jingping [1 ,2 ]
机构
[1] Sichuan Univ, Frontiers Sci Ctr Dis Related Mol Network, Dept Gen Surg, West China Hosp, 2222 Xinchuan Rd, Chengdu 610041, Peoples R China
[2] Sichuan Univ, Frontiers Sci Ctr Dis Related Mol Network, NHC Key Lab Transplant Engn & Immunol, West China Hosp, 2222 Xinchuan Rd, Chengdu 610041, Peoples R China
[3] Guizhou Prov Peoples Hosp, Dept Emergency, Guiyang, Peoples R China
基金
中国国家自然科学基金;
关键词
ACUTE LUNG INJURY; MECHANISMS; MICROVESICLES;
D O I
10.1039/d4bm01505c
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Uncontrolled inflammation is one of the major causes of various forms of tissue injury, and nanomedicines with immunoregulatory effects are needed. Mesenchymal stromal cell-derived extracellular vesicles (e.g., MSC-EVs) have been proposed as promising therapies, but the highly efficient generation of EVs with desirable properties is still a considerable challenge in this field. Here, we report that preconditioning MSCs with a critical immune process (pyroptosis) is a robust method for improving both the yield and anti-inflammatory potency of MSC-EVs. In brief, pyroptosis-preconditioned MSCs using a combined lipopolysaccharide (LPS) and adenosine triphosphate (ATP) stimulation showed elevated EV yields compared with those of MSCs cultured under normal conditions. Pyroptosis preconditioning upregulated multiple pathways (e.g., cell proliferation, DNA repair, and the immune response) in MSCs, leading to the enrichment of immunoregulatory cargos (e.g., PD-L2 and STC2) in MSC-EVs. In vitro, pyroptosis-preconditioned MSC-EVs (P-EVs) treatment has greater potential to suppress cytokine expression and cell death in pyroptotic macrophages than treatment with normal MSC-EVs (N-EVs). Compared with N-EV treatment, P-EV treatment showed superior potency in attenuating proinflammatory cell infiltration, cytokine/chemokine expression, resident tissue cell death, and the severity of pathological injury in different models of inflammatory diseases (acute lung or kidney injury), and these effects are likely the joint result of diverse functional cargos delivered by such EVs. This study highlights that pyroptosis preconditioning is a promising strategy for the highly efficient production of MSC-EVs with advanced therapeutic potential for treating diverse inflammatory diseases.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Emerging Role of Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Pathogenesis of Haematological Malignancies
    Cominal, Jucara Gastaldi
    Cacemiro, Maira da Costa
    Pinto-Simoes, Belinda
    Kolb, Hans-Jochem
    Ribeiro Malmegrim, Kelen Cristina
    de Castro, Fabiola Attie
    STEM CELLS INTERNATIONAL, 2019, 2019
  • [32] Mesenchymal Stromal Cell-Derived Extracellular Vesicles: Their Features and Impact on Fibrosis and Myogenesis in Vitro
    Novokreshchenova, A. N.
    Butorina, N. N.
    Payushina, O., V
    Sheveleva, O. N.
    Evtushenko, E. G.
    Domaratskaya, E., I
    BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY, 2020, 14 (04) : 289 - 297
  • [33] AKI Recovery Induced by Mesenchymal Stromal Cell-Derived Extracellular Vesicles Carrying MicroRNAs
    Collino, Federica
    Bruno, Stefania
    Incarnato, Danny
    Dettori, Daniela
    Neri, Francesco
    Provero, Paolo
    Pomatto, Margherita
    Oliviero, Salvatore
    Tetta, Ciro
    Quesenberry, Peter J.
    Camussi, Giovanni
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2015, 26 (10): : 2349 - 2360
  • [34] Mesenchymal Stromal Cell-Derived Extracellular Vesicles for Vasculopathies and Angiogenesis: Therapeutic Applications and Optimization
    Zhu, Ying
    Liao, Zhao-Fu
    Mo, Miao-Hua
    Xiong, Xing-Dong
    BIOMOLECULES, 2023, 13 (07)
  • [35] Proteomic Analysis of Mesenchymal Stromal Cell-Derived Extracellular Vesicles and Reconstructed Membrane Particles
    Tejeda-Mora, Hector
    Leon, Leticia G.
    Demmers, Jeroen
    Baan, Carla C.
    Reinders, Marlies E. J.
    Bleck, Bertram
    Lombardo, Eleuterio
    Merino, Ana
    Hoogduijn, Martin J.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (23)
  • [36] The Therapeutic Potential of Multipotent Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Endometrial Regeneration
    Tabeeva, Gyuzyal
    Silachev, Denis
    Vishnyakova, Polina
    Asaturova, Alexandra
    Fatkhudinov, Timur
    Smetnik, Antonina
    Dumanovskaya, Madina
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (11)
  • [37] Scale-up And Characterization Of Therapeutic Mesenchymal Stromal Cell-derived Extracellular Vesicles
    Uman, Selen
    Burdick, Jason A.
    CIRCULATION RESEARCH, 2021, 129
  • [38] Potential of Mesenchymal Stromal Cell-Derived Extracellular Vesicles as Natural Nanocarriers: Concise Review
    Draguet, Florian
    Bouland, Cyril
    Dubois, Nathan
    Bron, Dominique
    Meuleman, Nathalie
    Stamatopoulos, Basile
    Lagneaux, Laurence
    PHARMACEUTICS, 2023, 15 (02)
  • [39] Inflammation-Stimulated Mesenchymal Stromal Cell-Derived Extracellular Vesicles Attenuate Inflammation
    Harting, Matthew T.
    Srivastava, Amit K.
    Zhaorigetu, Siqin
    Bair, Henry
    Prabhakara, Karthik S.
    Furman, Naama E. Toledano
    Vykoukal, Jody V.
    Ruppert, Katherine A.
    Cox, Charles S., Jr.
    Olson, Scott D.
    STEM CELLS, 2018, 36 (01) : 79 - 90
  • [40] Mesenchymal Stromal Cell-Derived Extracellular Vesicles: Their Features and Impact on Fibrosis and Myogenesis in Vitro
    A. N. Novokreshchenova
    N. N. Butorina
    O. V. Payushina
    O. N. Sheveleva
    E. G. Evtushenko
    E. I. Domaratskaya
    Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology, 2020, 14 : 289 - 297