Interpolation of toric varieties

被引:0
作者
Dickenstein, Alicia [1 ]
Di Rocco, Sandra [2 ]
Piene, Ragni [3 ]
机构
[1] Univ Buenos Aires, FCEN, Dept Matemat, Ciudad Univ,Pab 1, RA-1428 Buenos Aires, DF, Argentina
[2] KTH Royal Inst Technol, Dept Math, SE-10044 Stockholm, Sweden
[3] Univ Oslo, Dept Math, POB 1053 Blindern, NO-0316 Oslo, Norway
来源
NEW YORK JOURNAL OF MATHEMATICS | 2024年 / 30卷
关键词
Toric variety; interpolation; osculating spaces; lattice polytopes;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X C P-d be an m-dimensional variety in d-dimensional complex projective space. Let k be a positive integer such that the combinatorial number ( m + k k ) is smaller than or equal to d . Consider the following interpolak tion problem: does there exist a variety Y C P-d of dimension strictly smaller than ( m + k k) , with X C Y , such that the tangent space to Y at a point p is an element of X is k equal to the k th osculating space to X at p , for almost all points p is an element of X ? In this paper we consider this question in the toric setting. We prove that if X is toric, then there is a unique toric variety Y solving the above interpolation problem. We identify Y in the general case and we explicitly compute some of its invariants when X is a toric curve.
引用
收藏
页码:1498 / 1516
页数:19
相关论文
共 19 条
  • [1] [Anonymous], 1994, Discriminants, resultants and multidimensional determinants, DOI DOI 10.1007/978-0-8176-4771-1.1499
  • [2] Positive geometries and canonical forms
    Arkani-Hamed, Nima
    Bai, Yuntao
    Lam, Thomas
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2017, (11):
  • [3] The Amplituhedron
    Arkani-Hamed, Nima
    Trnka, Jaroslav
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2014, (10):
  • [4] BLASCHKE WILHELM, 1973, Elementare Differentialgeometrie. Die Grundlehren der mathematischen Wissenschaften, V1, DOI [10.1007/978-3-642-49193-1, DOI 10.1007/978-3-642-49193-1]
  • [5] Cyclic polytopes and oriented matroids
    Cordovil, R
    Duchet, P
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2000, 21 (01) : 49 - 64
  • [6] Higher order selfdual toric varieties
    Dickenstein, Alicia
    Piene, Ragni
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (05) : 1759 - 1777
  • [7] HIGHER ORDER DUALITY AND TORIC EMBEDDINGS
    Dickenstein, Alicia
    Di Rocco, Sandra
    Piene, Ragni
    [J]. ANNALES DE L INSTITUT FOURIER, 2014, 64 (01) : 375 - 400
  • [8] Binomial ideals
    Eisenbud, D
    Sturmfels, B
    [J]. DUKE MATHEMATICAL JOURNAL, 1996, 84 (01) : 1 - 45
  • [9] EU SEN-PENG, 2010, Electron. J. Combin., V17, pR47, DOI [10.37236/319.1509, DOI 10.37236/319.1509]
  • [10] Kleiman StevenL., 1977, Real and compl. Singul., Proc. Nordic Summer Sch., Symp. Math., P297