On permutation polynomials modulo 7n

被引:0
作者
Sharma, P. L. [1 ]
Kumar, Sushil [1 ]
Ashima [2 ]
Dhiman, Neetu [3 ]
机构
[1] HP Univ, Dept Math & Stat, Shimla, Himachal Prades, India
[2] Univ Delhi, Hansraj Coll, Dept Math, Delhi, India
[3] HP Univ, Univ Inst Technol, Dept Appl Sci & Humanities, Shimla, Himachal Prades, India
关键词
Finite rings; Permutation polynomials; Residue classes; Congruences; FINITE-FIELD PERMUTE; ELEMENTS;
D O I
10.47974/JDMSC-1671
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A polynomial that permutes the elements of a finite ring R is known as a permutation polynomial. The conditions for the coefficients of a polynomial of degree d to be a permutation polynomial modulo p n , are known for p = 2, 3, 5. In this paper, we obtain the necessary and sufficient conditions on the coefficients of a polynomial modulo 7nto n to be a permutation polynomial.
引用
收藏
页码:1743 / 1751
页数:9
相关论文
共 50 条
  • [41] Permutation polynomials over finite fields providing involutions
    Kevinsam, B.
    Vanchinathan, P.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [42] A note on n! modulo p
    Garaev, M. Z.
    Hernandez, J.
    MONATSHEFTE FUR MATHEMATIK, 2017, 182 (01): : 23 - 31
  • [43] Some generalized permutation polynomials over finite fields
    Qin, Xiaoer
    Yan, Li
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2021, 64 (01): : 75 - 87
  • [44] On periodicity properties of Costas arrays and a conjecture on permutation polynomials
    Golomb, SW
    Moreno, O
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (06) : 2252 - 2253
  • [45] Permutation polynomials and a new public-key encryption
    Khachatrian, Gurgen
    Kyureghyan, Melsik
    DISCRETE APPLIED MATHEMATICS, 2017, 216 : 622 - 626
  • [46] Necessary and sufficient conditions of two classes of permutation polynomials
    Liu, Xiaogang
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 77
  • [47] Further results on permutation polynomials over finite fields
    Yuan, Pingzhi
    Ding, Cunsheng
    FINITE FIELDS AND THEIR APPLICATIONS, 2014, 27 : 88 - 103
  • [48] On a certain vector crank modulo 7
    Hirschhorn, Michael D.
    Toh, Pee Chon
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (01)
  • [49] Some quadratic permutation polynomials over finite fields
    Singh, Rajesh P.
    Vishwakarma, Chandan Kumar
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (11)
  • [50] Cyclotomic mapping permutation polynomials over finite fields
    Wang, Qiang
    SEQUENCES, SUBSEQUENCES, AND CONSEQUENCES, 2007, 4893 : 119 - 128