On permutation polynomials modulo 7n

被引:0
作者
Sharma, P. L. [1 ]
Kumar, Sushil [1 ]
Ashima [2 ]
Dhiman, Neetu [3 ]
机构
[1] HP Univ, Dept Math & Stat, Shimla, Himachal Prades, India
[2] Univ Delhi, Hansraj Coll, Dept Math, Delhi, India
[3] HP Univ, Univ Inst Technol, Dept Appl Sci & Humanities, Shimla, Himachal Prades, India
关键词
Finite rings; Permutation polynomials; Residue classes; Congruences; FINITE-FIELD PERMUTE; ELEMENTS;
D O I
10.47974/JDMSC-1671
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A polynomial that permutes the elements of a finite ring R is known as a permutation polynomial. The conditions for the coefficients of a polynomial of degree d to be a permutation polynomial modulo p n , are known for p = 2, 3, 5. In this paper, we obtain the necessary and sufficient conditions on the coefficients of a polynomial modulo 7nto n to be a permutation polynomial.
引用
收藏
页码:1743 / 1751
页数:9
相关论文
共 50 条
  • [31] Permutation polynomials of the type xr g(xs) over Fq2n
    Bartoli, Daniele
    Quoos, Luciane
    DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (08) : 1589 - 1599
  • [32] A specific type of permutation and complete permutation polynomials over finite fields
    Ongan, Pinar
    Temur, Burcu Gulmez
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (04)
  • [33] Local method for compositional inverses of permutation polynomials
    Yuan, Pingzhi
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (07) : 3070 - 3080
  • [34] PERMUTATION POLYNOMIALS OVER RESIDUE CLASS RINGS
    Karpov, A., V
    PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2013, 22 (04): : 16 - +
  • [35] Permutation Polynomials from two piecewise functions
    Yuan, Pingzhi
    2019 NINTH INTERNATIONAL WORKSHOP ON SIGNAL DESIGN AND ITS APPLICATIONS IN COMMUNICATIONS (IWSDA), 2019,
  • [36] On Cryptographic Parameters of Permutation Polynomials of the form xrh(x(2n-1)/d)
    Jeong, Jaeseong
    Kim, Chang Heon
    Koo, Namhun
    Kwon, Soonhak
    Lee, Sumin
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2022, E105 (08) : 1134 - 1146
  • [37] Distribution of alternative power sums and Euler polynomials modulo a prime
    Li, Yan
    Kim, Min-Soo
    Hu, Su
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2012, 23 (1-2): : 19 - 25
  • [38] Classification of some permutation quadrinomials from self reciprocal polynomials over F2n
    Martinez, F. E. Brochero
    Gupta, Rohit
    Quoos, Luciane
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 91
  • [39] Two new permutation polynomials with the form (x2k + x plus δ)s + x over F2n
    Zeng, Xiangyong
    Zhu, Xishun
    Hu, Lei
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2010, 21 (02) : 145 - 150
  • [40] A note on n! modulo p
    M. Z. Garaev
    J. Hernández
    Monatshefte für Mathematik, 2017, 182 : 23 - 31