Proof of a conjecture of Das on the coefficients of mock theta functions

被引:0
|
作者
Dazhao Tang [1 ]
机构
[1] School of Mathematical Sciences, Chongqing Normal University, Chongqing
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2025年 / 119卷 / 3期
基金
中国国家自然科学基金;
关键词
3-dissections; Congruences; Generating functions; Mock theta functions;
D O I
10.1007/s13398-025-01728-x
中图分类号
学科分类号
摘要
Ramanujan recorded seventeen mock theta functions in his last letter to Hardy. Quite recently, Das (J Math Anal Appl 543(2):128913, 2025) proved some congruences modulo small powers of 3 between the coefficients of the second order mock theta functions μ2(q) and A2(q), introduced by Ramanujan and McIntosh, respectively. Moreover, Das conjectured a congruence modulo 2187 and three congruences modulo 6561 between the coefficients of μ2(q) and A2(q). In this paper, we prove these conjectural congruences by employing some q-series manipulations. Further, we conjecture an infinite family of congruences modulo high powers of 3 between the coefficients of μ2(q) and A2(q). © The Author(s) under exclusive licence to The Royal Academy of Sciences, Madrid 2025.
引用
收藏
相关论文
共 50 条
  • [21] The Fourth and Eighth Order Mock Theta Functions
    Srivastava, Bhaskar
    KYUNGPOOK MATHEMATICAL JOURNAL, 2010, 50 (01): : 165 - 175
  • [22] On second and eighth order mock theta functions
    Su-Ping Cui
    Nancy S. S. Gu
    Li-Jun Hao
    The Ramanujan Journal, 2019, 50 : 393 - 422
  • [23] On two fifth order mock theta functions
    Sander Zwegers
    The Ramanujan Journal, 2009, 20 : 207 - 214
  • [24] Mock theta functions and Appell–Lerch sums
    Bin Chen
    Journal of Inequalities and Applications, 2018
  • [25] ON CERTAIN RAMANUJAN MOCK THETA-FUNCTIONS
    GUPTA, A
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1993, 103 (03): : 257 - 267
  • [26] Three-parameter mock theta functions
    Cui, Su-Ping
    Gu, Nancy S. S.
    Hou, Qing -Hu
    Su, Chen-Yang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 515 (02)
  • [27] GENERALIZATIONS OF MOCK THETA FUNCTIONS AND RADIAL LIMITS
    Cui, Su-Ping
    Gu, Nancy S. S.
    Su, Chen-Yang
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (08) : 3317 - 3329
  • [28] Symmetric relations related to mock theta functions
    Wang, Chun
    RAMANUJAN JOURNAL, 2025, 66 (04)
  • [29] On two fifth order mock theta functions
    Zwegers, Sander
    RAMANUJAN JOURNAL, 2009, 20 (02) : 207 - 214
  • [30] On second and eighth order mock theta functions
    Cui, Su-Ping
    Gu, Nancy S. S.
    Hao, Li-Jun
    RAMANUJAN JOURNAL, 2019, 50 (02) : 393 - 422