Rockfalls trajectography: 3D models predictive capability assessment and coefficients calibration using optimization-based processes

被引:1
作者
Raibaut, Fantin [1 ]
Ivanez, Olivier [2 ]
Douthe, Cyril [3 ]
Barry, Benjamin [4 ]
机构
[1] IRS, 16 Ch Saquier, F-06200 Nice, France
[2] TERZATEC, 67 Av Verdun, F-06360 Eze, France
[3] Ecole Ponts, Lab Navier, 14-20 Bd Newton, F-77420 Champs Sur Marne, France
[4] AEGIS GRP, 39 Av Teiras, F-06300 Nice, France
关键词
Rockfalls hazard; 3D trajectographic simulations; Predictive capability; Coefficients calibration; Optimization; Wasserstein distance; Mesh Adaptive Direct Search; ROCK; FRAGMENTATION; TRAJECTORIES; PROTECTION; SIMULATION; HAZARD; FIELD;
D O I
10.1016/j.enggeo.2025.107937
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
This paper presents a method for assessing the predictive capability of three-dimensional (3D) trajectographic simulation models by back-analysis of real rockfall events. Relying on the Optimal Transport theory, we measure the difference between observed and simulated rock stop points distributions with the Wasserstein distance: this metric can be seen as a measure of the mean distance between observed an simulated stop points. We use the Wasserstein distance as a cost function in a Black Box optimization algorithm to calibrate soil restitution and energy dissipation coefficients. We test our methodology with the RocPro3D software to simulate a man-triggered boulder detachment, for which the final position of fragmented rocks is known. The calibrated simulation parameters enabled a 25% decrease in the mean prediction error.
引用
收藏
页数:11
相关论文
共 65 条
  • [1] Aaron J., McDougall S., Kowalski J., Mitchell A., Nolde N., Probabilistic prediction of rock avalanche runout using a numerical model, Landslides, 19, pp. 2853-2869, (2022)
  • [2] Alarie S., Audet C., Gheribi A.E., Kokkolaras M., Le Digabel S., Two decades of blackbox optimization applications, EURO J. Comput. Optim., 9, (2021)
  • [3] Asteriou P., Tsiambaos G., Empirical model for predicting rockfall trajectory direction, Rock Mech. Rock Eng., 49, pp. 927-941, (2016)
  • [4] Audet C., Dennis J.E., Mesh adaptive direct search algorithms for constrained optimization, SIAM J. Optim., 17, 1, pp. 188-217, (2006)
  • [5] Audet C., Le Digabel S., Montplaisir V.R., Tribes C., NOMAD version 4: Nonlinear optimization with the MADS algorithm, ACM Trans. Math. Software, 48, 3, pp. 1-22, (2022)
  • [6] Barnichon J.D., Chautard C., (2023)
  • [7] Berger F., Dorren L.K.A., pp. 245-252, (2006)
  • [8] Berger F., Martin R., Auber B., Mathy A., Etude comparative, en utilisant l’événement du 28 décembre 2008 à Saint-Paul de Varces, du zonage de l'aléa de chute de pierre avec différents outils de simulation trajectographique et différentes matrices d'aléa, Cemagref, (2011)
  • [9] Borgefors G., Distance transformations in digital images, Comput. Vis. Graph. Image Process., 34, pp. 344-371, (1986)
  • [10] Bourrier F., Modélisation de l'impact d'un bloc rocheux sur un terrain naturel, application à la trajectographie des chutes de blocs, (2008)